A Large-scale Study on Predicting and Contextualizing Building Energy Usage

J. Zico Kolter
CS and AI Lab (CSAIL), MIT

Joseph Ferreira Jr.
Urban Studies and Planning, MIT

AAAI Special track on Sustainability and AI, 2011

Presented by
Saima Aman
Abstract

A data-driven approach to modeling end user energy consumption in residential and commercial buildings (based upon features, such as living area, building value, building type, etc.).

Data set
• Monthly electricity and gas bills for 6500 buildings (approx) in Cambridge, MA. (several years)
• Tax assessor records and geographical survey information for building features (publicly available)

EnergyView System
1) For utilities/authorized institutions: A system to visualize energy consumption for each building in the city
 Advantage: Quickly identify outliers; target homes for potential retrofits/ tiered pricing
2) For other end users: An interface for entering their info (electricity & gas usage; home info)
 Advantage: Compares their consumption to that of similar buildings.

Motivation
Allowing users to contextualize their consumption; relating it to the consumption in similar buildings, can produce behavior changes to reduce consumption.
Background

• 86% of the total energy consumed worldwide comes from \textit{(unsustainable)} fossil fuels
• In the US, 41% of all energy (electricity & natural gas) is consumed in residential and commercial buildings

\textbf{Shortcomings of current electricity and gas bills}
• little information or context to usage other than a dollar amount.
• no comparison with of a building’s consumption with similar buildings
• no info about the financial feasibility of retrofits/ upgraded appliances
• no info about the portion of consumption due to location (eg., cold locations) versus personal behavior
Contribution

• They analyze a large-scale real-world energy usage data set
• Illustrate several interesting characteristics of the data
• Present an end-user interface for obtaining contextual information about ones own energy use.

• One of the largest-scale, publicly-available studies of its kind, conducted on real data
• EnergyView tool represents one of the first tools of its kind where the algorithms behind its predictions are fully described.
Data Collection and Analysis

Electric and Gas bills
• Provided by NStar – electricity and gas utility in Cambridge, MA.
• Data fields:
 • Account numbers
 • Corresponding street address
 • Monthly electricity and gas meter readings (typically, for two to three years)
 • Electricity usage (in kilowatt-hours per month)
 • Gas usage (in therms per month – converted into kWh to predict TOTAL usage)

Tax Assessor and GIS Data
• Both publicly available
• Tax Assessor data fields:
 • value of the building
 • property class (condominium, single family home, retail store, etc)
 • square footage
 • building construction year, etc.
• GIS data fields:
 • polygonal outlines for parcels and buildings in the city
 • estimated roof heights for buildings (obtained via an aerial lidar scan)
Logarithmic Energy Scaling

- 6,499 unique buildings (with complete uninterrupted data for at least a year)
- More than half of the 12,792 unique addresses in the Cambridge tax assessor records

Histogram of total energy consumption per building for 6499 buildings

- The data appears roughly Gaussian
- The x axis is logarithmic => total energy consumption follows a log-normal distribution
Logarithmic Energy Scaling (contd.)

- Many observed phenomena naturally follow roughly log-normal distributions
- These include factors that influence energy consumption, such as income, property sizes, and building square footage.

Plot of building square footage versus total yearly energy consumption (log-log scale)

- Besides great deal of noise, there is a fairly clear linear relationship, indicating an intuitive power-law relationship between square footage and energy consumption.
 - (Power-law behavior – linear relation between log of input and output variables)

- Exploit these types of relationships to derive predictive models of energy consumption
Feature Selection

• For real-valued attributes, their logarithm was included in the feature vector
• For discrete features, a standard binary encoding of the feature was included

• **Selection**: For the sake of model simplicity and intuition, it is useful to determine which features are most useful for predicting energy consumption.

• Used a **greedy forward feature selection** procedure that sequentially adds features based on how much they decrease training root mean squared error (RMSE) as measured by *cross validation* of a linear regression predictor.

• 9 features decrease RMSE by a statistically significant degree ($p < 0.01$ in a pairwise t-test)
• Correspond to features expected to have a large impact on energy consumption:
 • building value; square footage
 • number of electric/gas accounts (~ number of separate units)
 • building class (condo, single-family home, multi-family home, retail store, office, etc.)
 • heat fuel (oil, gas, or electric)
 • heat type (forced air, hot water, electric radiant, etc)
 • whether or not the house has central AC.
Feature Selection (contd.)

• Features from Tax Assessor and GIS Records

<table>
<thead>
<tr>
<th>Feature</th>
<th>% RMSE Reduction</th>
<th>Individual Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Value</td>
<td>24.721%</td>
<td>0.659</td>
</tr>
<tr>
<td>Num Electric Meters</td>
<td>13.438%</td>
<td>0.647</td>
</tr>
<tr>
<td>Property Class</td>
<td>12.729%</td>
<td>0.633</td>
</tr>
<tr>
<td>Living Area</td>
<td>2.760%</td>
<td>0.611</td>
</tr>
<tr>
<td>Num Gas Meters</td>
<td>2.517%</td>
<td>0.626</td>
</tr>
<tr>
<td>Heat Fuel</td>
<td>2.241%</td>
<td>0.480</td>
</tr>
<tr>
<td>Building Style</td>
<td>1.432%</td>
<td>0.632</td>
</tr>
<tr>
<td>Heat Type</td>
<td>0.826%</td>
<td>0.431</td>
</tr>
<tr>
<td>Central AC</td>
<td>0.749%</td>
<td>0.558</td>
</tr>
</tbody>
</table>

• 35 attributes used from tax assessor and GIS records

• Ranked in the order that they are selected in greedy forward feature selection.

• Correlation coefficient between total energy and the features in isolation is also shown.
Modeling

• Not expected to predict the energy usage exactly
• Goal: provide information about where users lie in the distribution of energy consumption
• Focus is on probabilistic methods that return a distribution over possible energy consumption levels

Predictors will have the form:
\[y = f(x) + e \]

- \(y \) – predicted energy usage (log of predicted energy, in this exp.)
- \(x \) – a vector of inputs describing known features of the house
- \(e \) – error term
Modeling (contd.)

Linear regression
- The error term is given by input-independent distribution $p(e) \rightarrow$ likelihood function.
- Likelihood functions:
 - Standard normal error term (leading to ordinary least squares)
 - Student-t distributed error term
 - Laplace distributed error term

Gaussian process regression
- Non-parametric regression
- Used the GPML package for the Gaussian and Laplace likelihood GP regression
- Used the GPstuff package for the T likelihood GP regression.
Experiments

5 fold cross validation
• divided the 6,499 data points randomly into 5 equal-sized group
• trained regression methods on the union of 4 groups, and tested on the held out data
• repeated for all 5 groups and report the average error and log likelihood

Training errors
regression methods were trained and tested on the entire data set.

Hyperparameter optimization for GP models
• computationally intensive
• parameters optimized by maximizing marginal likelihood only on a random subset of 700 of the training examples for each cross validation fold

Evaluation Metrics
• log likelihood of the data
• root mean squared error (RMSE) on the logarithmically scaled outputs
• RMSE on the original energy consumptions (without log scaling)
Results

Cross-validation performance (training error in parenthesis):

<table>
<thead>
<tr>
<th>Method</th>
<th>Log Likelihood</th>
<th>RMSE</th>
<th>No Log RMSE ($\times 10^5$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output only, Normal likelihood</td>
<td>-1.484 (-1.482)</td>
<td>1.066</td>
<td>11.106 (11.105)</td>
</tr>
<tr>
<td>Output only, Laplace likelihood</td>
<td>-1.413 (-1.412)</td>
<td>1.079</td>
<td>11.110 (11.110)</td>
</tr>
<tr>
<td>Output only, T likelihood</td>
<td>-1.399 (-1.399)</td>
<td>1.074</td>
<td>11.109 (11.109)</td>
</tr>
<tr>
<td>Linear regression, Normal likelihood</td>
<td>-0.813 (-0.788)</td>
<td>0.545</td>
<td>9.581 (9.231)</td>
</tr>
<tr>
<td>Linear regression, Laplace likelihood</td>
<td>-0.710 (-0.685)</td>
<td>0.549</td>
<td>9.422 (9.397)</td>
</tr>
<tr>
<td>Linear regression, T likelihood</td>
<td>-0.695 (-0.674)</td>
<td>0.547</td>
<td>9.488 (9.402)</td>
</tr>
<tr>
<td>GP regression, Normal likelihood</td>
<td>-0.782 (-0.747)</td>
<td>0.531</td>
<td>9.212 (8.016)</td>
</tr>
<tr>
<td>GP regression, Laplace likelihood</td>
<td>-0.660 (-0.620)</td>
<td>0.535</td>
<td>9.704 (7.609)</td>
</tr>
<tr>
<td>GP regression, T likelihood</td>
<td>-0.629 (-0.557)</td>
<td>0.543</td>
<td>9.746 (5.928)</td>
</tr>
<tr>
<td>GP regression, all features</td>
<td>-0.786 (-0.710)</td>
<td>0.533</td>
<td>9.243 (6.313)</td>
</tr>
<tr>
<td>Linear regression, no log</td>
<td>-15.240 (-14.962)</td>
<td>1.738</td>
<td>9.260 (7.566)</td>
</tr>
<tr>
<td>GP regression, no log</td>
<td>-15.874 (-90.589)</td>
<td>2.775</td>
<td>11.240 (2.889)</td>
</tr>
</tbody>
</table>

- “Output only” results – involve fitting the T, Laplacian, and normal distributions directly to the log of the energy data (without any regressors).

- The best-performing model is able to explain about 75% of the variance (in the log scale).
- Some elements of energy usage are simply behaviorally based and cannot be predicted.
Results (contd.)

GP methods perform better than simple linear regression models

However, simple linear models are preferable:
• allow for simple descriptions of energy usage in terms of power-law relationship
• provide much more succinct, computationally efficient, and interpretable models.
• obtain RMSE that is only marginally worse than the GP methods
EnergyView

• For utilities/authorized organizations:

City-level Energy view
EnergyView

• Contextualizing Energy Usage:

End-user Energy view

• Available online: http://people.csail.mit.edu/ kolter/energyview