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Abstract—Big data applications such as in smart electric
grids, transportation, and remote environment monitoring involve
geographically dispersed sensors that periodically send back
information to central nodes. In many cases, data from sensors
is not available at central nodes at a frequency that is required
for real-time modeling and decision-making. This may be due
to physical limitations of the transmission networks, or due to
consumers limiting frequent transmission of data from sensors
located at their premises for security and privacy concerns. Such
scenarios lead to partial data problem and raise the issue of data
veracity in big data applications. We describe a novel solution
to the problem of making short term predictions (up to a few
hours ahead) in absence of real-time data from sensors in Smart
Grid. A key implication of our work is that by using real-time
data from only a small subset of influential sensors, we are
able to make predictions for all sensors. We thus reduce the
communication complexity involved in transmitting sensory data
in Smart Grids. We use real-world electricity consumption data
from smart meters to empirically demonstrate the usefulness of
our method. Our dataset consists of data collected at 15-min
intervals from 170 smart meters in the USC Microgrid for 7
years, totaling 41,697,600 data points.
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I. INTRODUCTION

Low cost wireless sensors are increasingly being deployed
in large numbers for tracking, monitoring, and control in
emerging big data applications such as in smart electric grids,
transportation, and remote medical and environment monitor-
ing. Examples of such sensors include sensors for monitoring
climate features such as temperature and green-house gas mea-
surements [8]; smart meters for measuring energy consumption
[15], [9]; and loop detectors installed under pavements for
recording traffic [13]. Sensor based big data applications often
encounter problems with respect to availability and timeliness
of data [5], where only partial data from sensors is available in
real-time, and complete high resolution data is available only
after certain periods. This may be due to physical limitations of
existing transmission networks, such as latency, bandwidth and
high energy consumption [4], or due to consumers opting out
of or limiting frequent transmission of information from sen-
sors located at their premises for security and privacy concerns
[10]. For example, fine-grained electricity consumption data
collected through smart meters can be used to infer activities
of the consumers and also indicate the presence or absence of
dwellers in the consumer premises [11].

Forecasting models in such applications often face chal-
lenges due to their assumption of data availability in real
time being invalidated. While volume, velocity, and variety
characterize the qualitative aspect of big data, veracity, refers
to its quantitative aspect. Without addressing veracity, big
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Fig. 1. In a smart grid network, data from a subset of meters (shown starred)
is transmitted in real-time, whereas for the rest of the meters, it is collected
locally and transmitted in batches periodically.

data solutions risk degradation in performance and inaccurate
interpretation of generated insights. We describe our novel
approach to address the problem of data veracity raised in
the context of Smart Electricity Grids where high volume
electricity consumption data is collected by smart meters
at consumer premises and securely transmitted back to the
electric utility over wireless or broadband networks to be used
for forecasting [2]. Due to physical limitations of existing
transmission networks, data from all smart meters is not readily
available in real-time [3],[9]. Instead, data from a subset of
meters is transmitted in real-time, whereas data from the rest
of the meters is collected locally and transmitted in batches
periodically (Fig. I).

Prior work in this area has focused on (i) reducing commu-
nication requirements by developing sampling or compression
strategies, or methods to estimate missing real-time data [14],
[6], and (ii) estimating missing real-time data by techniques
such as regression-based interpolation [7]. We use a different
approach where instead of trying to estimate the missing real-
time data, we try to make predictions using partial real time
data by learning dependencies among time series originating
from different sensors.

II. PROBLEM FORMULATION

Consider a large set of sensors S = {s1, ..., s, } deployed
in a big data application producing time series output in form
of ordered sequence of readings 7; = {x;},j =1,...,t. Some
of these sensors can send data back to a central node in real-
time, while the rest of the sensors send back data periodically.



Our goal is to use this partial data to make predictions for all
sensors for a given prediction horizon h. Given a set of sensor
time series outputs {z%},j = 1,...,t,i = 1,...,n, short-term
prediction is to estimate {x b= t + 1, ...,t+ h,i=1,...,n
for a horizon h, which is a “few hours ahead.

We formulate the problem of short term prediction with
partial data as follows: Given a set of sensors S with time
series outputs {x;},] =1,..,t,9 = 1,...,n, make short-term
predictions {z%},7 = t 4+ 1,...,t + h,i = 1,...,n for each
sensor s; € S, when readings {z}},k =t —r+1,..,¢ for
0 € O are missing for a subset O of sensors, O C S.

III. VERACITY AWARE SHORT-TERM PREDICTION

We propose a two-stage solution for building a short term
electricity consumption prediction model that needs to collect
real-time data from only a small subset of smart meters se-
lected on the basis of causal influence. First, we learn temporal
correlations among historic time series data collected from
smart meters. Then, we build our predictive model leveraging
such discovered temporal dependencies.

Influence Discovery: We cast the problem of short term
prediction with partial data as a regression problem. In regres-
sion, given data (x*,y;),i = 1,2, ...,n, the response y; for the
ith observation is estimated in terms of p predictor variables,
x* = (x1,...,7;) by minimizing the residual squared error.
For prediction with partial data, the predictors for s; are se-
quences {Py}r; of past values from other sensors, excluding
the sensor’s own past values, which are not available in real-
time. We used lasso to identify sensors with strong influence
on the given sensor s; and leave out others. Lasso is known
to improve variance and reduce overall prediction errors by
shrinking or reducing to zero some coefficients [16].

Given n sensor outputs in form of time series x', x2, ..., X",

with readings at timestamps t = 1, ...7T", for each series x*, lasso
gives a sparse solution for coefficients w by minimizing the
sum of squared error and a constant times the L1-norm of the
coefficients:
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where P} is the sequence of past [ readings, ie, P} =
(] _,,...,x]_1], w;; is the j-th vector of coefficients w;
representing the dependency of series i on series j, and A is a
parameter which determines the sparseness of w; and can be
determined using cross-validation method.

Influence Model (IM): We work on day long windows of
data to ensure stationarity within each window, implying that
the dependence on the preceding values does not change with
time. We discover influence and train our model on a previous
similar day. We consider two cases of similarity: previous
week, which is the same day of the week in preceding week
and previous day, which is the day preceding the given day.
Our model is formally described below:

1)  Split the readings for each smart meter into a set of
daily series {Dj}i=1,.. n j=1..

2)  Define dependency matrix /\/l‘ for each day using
the weight vectors w; in equation 1 as its rows. Set
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Fig. 3. Prediction performance of influence model with respect to ART.

the diagonal of the dependency matrix to zero, i.e.,
M(i, i] = 0, for each i.

3) Define a regression tree for each smart meter that
uses predictors from all meters with non-zero co-
efficients in the dependency matrix learned from a
similar day, i.e., predictors are taken from {D*}, Vk :
Mimli, k] # 0.

A key benefit of this model is that we are able to make
predictions for a sensor in absence of its own past values by
using past values of its influential sensors.

IV. EXPERIMENTAL EVALUATION

We evaluate the feasibility and accuracy of our proposed
method in a real-life cyber-physical system, while at the
same time quantifying scalability savings. We use electricity
consumption data collected by smart meters installed in the
USC campus microgrid [15] in Los Angeles, and weather data
taken from NOAA’s USC campus station. For evaluation, we
use the Auto-Regressive Tree (ART) as the baseline. ART uses
recent values as features in a regression tree model and has
been shown to offer high predictive accuracy on a large range
of datasets [12]. We implement a specialized ART (p, h) model
that uses recent p values of a variable for making 4 interval
ahead prediction. ART was a natural choice for baseline
comparison, as our proposed model is also based on regression
tree. However, it is to be noted that while ART model uses a
variable’s own recent observations, our model only uses other
variables’ observations to make predictions. We used Mean
Absolute Percentage Error (MAPE = 137 | @) as the
evaluation metric as it is scale-independent [1], and allows
comparison across different ranges.

We use the influence model (IM) for making predictions
for different prediction horizons up to 8 hours ahead (Fig.
IV). The baseline ART model performs well up to 6 intervals
(1.5 hour) due to very-short-term prediction horizon, where
electricity consumption is not expected to drastically change
from its previous 4 values. Beyond that, for ART, recent
values used as predictors at the time of prediction become
increasingly ineffective for longer horizons, when IM’s use of
more recent real-time values of other sensors become more
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Fig. 2. Variance of Influence/dependency with (a) time, (b) size, and (c) distance: higher values observed for weekdays than for weekends.

useful predictors, and it consistently outperforms the baseline.
Compared to ART, IM is able to reduce MAPE by up to
10% (Fig. IV). Thus, more recent real-time values of other
sensors actually become more useful predictors than a sensor’s
own relatively older values. This is an important result and
main advantage of the influence model. Thus, when real-time
recent values are not available for a sensor, it uses recent real-
time values of other sensors that were identified by learning
dependencies among sensors on a similar day in past.

V. CONCLUSION

We address the issue of veracity in big data applications
that arises when real time data from all sensors is not available
at central nodes due to network limitations, or when limited by
consumers for security and privacy reasons. Standard models
for short term predictions are either unable to predict or
perform poorly when trying to predict with partial data. We
introduce a novel influence based model to make predictions in
absence of real-time data from majority of sensors using real-
time data from only a few influential sensors. We show that our
influence model outperforms baseline approach by up to 10%
for 2 to 8 hours ahead prediction despite lack of sensors’ own
real-time data. This model provide a simple and interpretable
solution that is generalizable to big data applications in several
domains.
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