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Abstract. FPGAs have been widely used for accelerating various ap-
plications. For many data intensive applications, the memory bandwidth
can limit the performance. 3D memories with through-silicon-via connec-
tions provide potential solutions to the latency and bandwidth issues. In
this paper, we revisit the classic 2D FFT problem to evaluate the perfor-
mance of 3D memory integrated FPGA. To fully utilize the fine grained
parallelism in 3D memory, optimal data layouts so as to effectively utilize
the peak bandwidth of the device are needed. Thus, we propose dynamic
data layouts specifically for optimizing the performance of the 3D ar-
chitecture. In 2D FFT, data is accessed in row major order in the first
phase whereas, the data is accessed in column major order in the second
phase. This column major order results in high memory latency and low
bandwidth due to high row activation overhead of memory. Therefore,
we develop dynamic data layouts to improve memory access performance
in the second phase. With parallelism employed in the third dimension
of the memory, data parallelism can be increased to further improve the
performance. We adopt a model based approach for 3D memory and we
perform experiments on the FPGA to validate our analysis and evalu-
ate the performance. Our experimental results demonstrate up to 40x
peak memory bandwidth utilization for column-wise FFT, thus resulting
in approximately 97% improvement in throughput for the complete 2D
FFT application, compared to the baseline architecture.

1 Introduction

FPGAs have been used as accelerators for many applications such as Signal Pro-
cessing, Image Processing, Packet classification etc. The general purpose proces-
sors cannot keep up with the demands of these applications in terms of per-
formance. Even with the high performance of FPGAs, meeting the throughput
requirement of these applications is a challenging task. Most of the applications
are data intensive and this translates to frequent accesses to the memory. The
bottleneck in these cases is the low bandwidth and high latency of the memory.

3D memory has been widely studied in the research community with the high
bandwidth and short latency access being the important parameters. 3D mem-
ories consist of stack of layers connected using Through Silicon Vias (TSVs) [9].
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The high speed vertical TSVs along with the third dimension of memory result
in short latencies and packs in large memory sizes compared to the conventional
2D memories. Although 3D memories are expected to provide 10× bandwidth
compared to 2D memory, this is subject to the ideal conditions. These include
data layouts which reduce row activation overhead, high page hit rate for stride
access, etc. These problems are similar to the issues in the conventional planar
memories. But, employing the solutions in the context of 3D memory is not
trivial due to the structure and organization of 3D memory.

In this paper, we target 2D FFT application on 3D memory integrated FPGA
and evaluate its performance with throughput and latency as the target metrics.
2D FFT is a data intensive application with stride memory access patterns. 2D
FFT consists of two phases and the access patterns in the two phases require
mutually conflicting data layouts. The ideal data layout in the first phase is
row major data layout whereas, the second phase requires a column major data
layout. Therefore, a static data layout trying to improve the performance in
one phase will lower the performance in the other phase. The main reasons for
this low performance are high number of row activations and low page hit rate.
Therefore, with a static data layout the true capability of 3D memory cannot
be realized. We address this problem by extending our solution of dynamic data
layouts [6] to 3D memory. The main contributions in this paper are:

1. Model the 2D FFT application on 3D memory integrated FPGA.
2. Develop optimal dynamic data layouts to optimize performance of 2D FFT

on 3D memory.
3. Evaluation of optimized and baseline implementation with throughout and

latency as the performance metrics.

2 Related Work

As the well-known simplest multidimensional FFT algorithm, the row-column
algorithm has been commonly used to implement 2D FFT by performing a se-
quence of 1D FFTs [10,15]. In this algorithm, input elements hold by an N×N
array are stored in row-major order in the external memory such as DRAM.
One major issue in the implementation of the 2D FFT architecture is the con-
siderable delay caused by DRAM row activation which are mainly introduced
by the strided memory access in the column wise 1D FFTs. To solve this prob-
lem, the authors in [2] propose a tiled data mapping method to improve the
external memory bandwidth utilization. They logically divide the input N ×N
input array into N

k
× N

k
tiles and map the elements in each tile to consecu-

tive memory locations. They conclude that the DRAM bandwidth utilization
is maximized when the size of each tile is set to be the size of the DRAM row
buffer. However, this solution introduces non-trivial on-chip hardware resource
cost for local transposition. Various traditional 2D memory based 2D FFT archi-
tectures achieving high throughput performance have been developed in [10,16].
In [10], the authors propose a 2D decomposition algorithm which enables lo-
cal 2D FFT on sub-blocks. In this way, the times of DRAM row activation is
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Fig. 1: (a) 3D MI-FPGA Architecture (b) 3D Memory

minimized. Vector radix 2D FFT in [16] presents a general structure theorem
to construct a multi-dimensional FFT architecture by decomposing a large size
problem into small size 2D FFTs. The external memory row activation overhead
is not considered.

3D memory is expected to provide bandwidth higher than the 2D memory
by an order of magnitude. There have been many works which have focused on
this aspect of 3D memory. [17] implements matrix multiplication and 2D FFT
on a Logic-in-Memory architecture. The architecture consists of a logic layer
is interleaved between two segments of memory layers to form a 3D architec-
ture. The performance metrics are energy efficiency and bandwidth. In [8], the
authors develop power efficient FFT on an architecture consisting of memory
layers stacked on multiple FPGA layers. The authors focus on energy efficiency
improvement while moving to a 3D architecture from a 2D architecture.

3 3D Memory Integrated FPGA (3D MI-FPGA)

Our model of 3D architecture consists of 3D memory integrated with FPGA
interacting through TSVs. We extend our previous work on 3D architectures
[13,14]. Here, we provide a brief overview of 3D Memory Integrated FPGA (3D
MI-FPGA). The architecture consists of three components: 3D memory, FPGA
and TSVs. Fig. 1 illustrates the architecture of 3D memory integrated FPGA.
The memory is composed of several layers (L) vertically stacked one above the
other. Each of these layers is partitioned into several banks. Vaults are defined
as the group of banks (1, 2, 3, 4 in Fig. 1) across layers which share a set of
interconnects (TSVs). This set of banks residing on one layer which belong to
the same vault (B) is analogous to the number of banks in a chip in the 2D
memory. The reason being these set of banks share the bus in 2D memory and
they share the TSVs in the 3D memory architecture. This set of TSVs shared
by the banks in a vault is denoted by Ntsv. Each vault has a dedicated memory
controller which handles the memory accesses to that particular vault. These
memory controllers form a separate layer in the memory. Vaults can be activated
at the same time as they do not share the TSVs. On the other hand, the banks
in a given vault share the TSVs and the activation of these banks has to be
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pipelined or interleaved as in the case of 2D memory. Denoting by BWvault

the bandwidth of a vault, the total bandwidth of 3D memory is V ×BWvault.
The FPGA architecture is similar to that of the conventional FPGA consisting
reconfigurable logic, DSP blocks, on-chip memory (Block RAM and Distributed
RAM) and memory controllers. The difference is that we model the FPGA to
interact with the memory through the set of TSVs connecting the FPGA and
the memory. These TSVs are between memory controllers on FPGA and those
in the memory. FPGA accesses the data in the memory through the TSVs which
are high speed, low latency vertical interconnects. The TSVs are characterized
by the number of TSVs and latency of data transfer across them. These two
parameters affect the amount of data that can be transferred between memory
and FPGA in a given unit of time. Each TSV can transfer 1 bit of data at a
time. Therefore, higher the number of TSVs, higher the bandwidth.

3.1 Timing Parameters

Bandwidth and latency of accesses to the 3D memory depend on a certain set of
timing parameters and we discuss these in this section. Data in the 3D memory
is stored in rows which combine to form a bank and which group together to
form a vault. Therefore, each row belongs to a specific bank and vault. When
memory is accessed, depending on the address a specific row, bank and vault
are activated. Therefore, although some of the parameters overlap with that of
the 2D memory, certain additional parameters have to be defined taking into
account the architecture and different accesses possible in the context of a 3D
memory. We model the 3D memory using the following parameters:

1. tdiff−row: minimum time required between issuing two successive activate
commands to different rows in the same bank

2. tdiff−bank: minimum time required between successive activate commands
to different rows in different banks in same or different vaults

3. tin−row: minimum time required between successive accesses to elements in
the same row in the same bank

4. tin−vault: minimum time required between accesses to different rows in dif-
ferent banks in the same vault

The values of the above parameters have a significant impact on latency and
bandwidth of the 3D memory. In general, accessing data from different vaults
causes zero latency. Hence, a parameter such as tdiff−vault is not defined. This
is because, since vaults are completely independent and can be active at the same
time, this parameter is equal to zero. Since the banks located in different layers
but belonging to the same vault can be activated in a pipeline, this latency
(tin−vault) is lower than that of accessing data from banks belonging to the
same layer and same vault. Other parameters are similar to the parameters of
2D memory. Therefore, accessing data from the same row in a bank (tin−row)
is faster than accessing data from two rows in different banks (tdiff−bank). The
highest latency is seen when we access data from two different rows in the same
bank in the same vault denoted by tdiff−row.
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4 2D FFT Architecture

4.1 1D FFT Kernel

An N -point (floating-point) 1D FFT kernel is implemented by concatenating
several basic components including radix block, data path permutation (DPP)
unit, and twiddle factor computation (TFC) unit. The design of each architecture
component relies on the FFT algorithm in use. Implementation details of those
components will be introduced next. We applied several energy optimizations
discussed in [3–5] onto the design components to reduce their energy consump-
tion. The 1D FFT kernel supports processing continuous data streams so as to
maximize design throughput and the memory bandwidth utilization.

Radix block The radix block is used to perform a butterfly computation on
some input samples. For example, the radix block for radix-4 FFT takes four in-
put samples, performs the butterfly computation and then generates four results
in parallel. Each radix block is composed of complex adders and subtractors. The
structure of a radix block is determined by the FFT algorithm in use. Fig. 2a
shows the structure of radix block for radix-4 FFT.

DPP Unit DPP unit is used for data permutation between butterfly computa-
tion stages in FFT. A DPP unit is composed of multiplexers and data buffers. In
subsequent clock cycles, data from previous butterfly computation stage are first
multiplexed and written into several data buffers. Each stored data element will
be buffered with a certain number of clock cycles and then read out. Outputs
from data buffers will also be multiplexed and fed into the next butterfly compu-
tation stage. Fig. 2b shows the DPP unit used for a radix-4 based FFT design.
Each DPP unit consists of eight 4-to-1 multiplexers and four data buffers. In
each cycle, a data buffer may be read and written simultaneously on different
addresses. The size of each data buffer depends on the ordinal number of its
present butterfly computation stage and the FFT problem size. Note that each
data element is a complex number including both its real part and imaginary
part, hence the data width is 64 bit.
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TFC Unit A TFC unit consists of two parts: the TFC generation logic and
the complex number multiplier. As shown in Fig. 2c, the TFC generation logic
includes several lookup tables (functional ROMs) for storing twiddle factor coef-
ficients, where the data read addresses will be updated with the control signals.
The size of each lookup table is determined by the ordinal number of its present
butterfly computation stage and the FFT problem size. Each lookup table can
be implemented using a BRAM or distributed RAM (dist. RAM) on FPGA [1].
Each complex number multiplier consists of four real number multipliers and
two real number adders/subtractors.

The proposed 2D FFT architecture is shown in Fig. 3, in which a controlling
unit (CU) and a permutation network are introduced. The permutation network
is developed based on our work in [7]. The CU is responsible for reconfiguring
the permutation network to achieve the dynamic data layout.

4.2 Baseline Architecture

In baseline architecture, when performing column-wise 1D FFTs, memory ad-
dress is increased with a stride equals to FFT problem size N after each memory
access. However, a minimum activate-to-activate delay exists when successively
accessing two rows in the same bank, same vault or accessing in two banks in the
same vault. This delay results in a decline in 3D memory bandwidth utilization,
thus the entire system throughput is impaired.

4.3 Optimized Architecture

In the optimized architecture, the controlling unit is responsible for reconfig-
uring the permutation network dynamically to ensure data results of row-wise
1D FFTs are mapped onto the different vaults using the optimal dynamic data
layout. Through this data remapping, vault row activation will be only needed
after several successive accesses on the same row rather than every memory ac-
cess. Thus, the impact of vault row activations on the entire system throughput
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will almost be minimized. Furthermore, to reduce the times of vault row acti-
vation, data inputs of several consecutive column-wise 1D FFTs will be moved
from vaults to local memory together, without waiting for the completion of the
current executed 1D FFT.

4.4 Optimal Dynamic Data Layouts

Our work in this paper is based on the dynamic data layouts (DDL) developed for
the traditional 2D external memory in [12]. In this approach, the data layout in
memory is dynamically reorganized during computation. After reorganizations,
non-unit stride accesses are converted to unit stride accesses, thereby reducing
cache misses. The data layout is optimal from the performance point of view as it
maximizes the memory bandwidth utilization. However, the data reorganization
overhead with regarding to latency and on-chip SRAM buffer consumption has
not been considered. In [6] , we proposed the optimal dynamic data layouts for 2D
memory such that peak memory bandwidth utilization is achieved with minimal
data reorganization overhead. The data reorganization overhead is evaluated
using the reorganizing latency and the on-chip buffer consumption. We further
optimized our approach in [6] so that this technique is applicable for 3D memory
based architecture. In the baseline, row major order data layouts are employed.
In our approach, instead of mapping results of row-wise FFTs to 3D memory in
row major order, we employ block-based dynamic data layout, and the results
are read block-by-block by the column-wise 1D FFT. The dynamic data layout
is organized into blocks, each of size w × h. w and h represent the width and
height, respectively. w is dynamically determined by the stride permutation to
be performed in 1D FFTs. We assume the row buffer size in each 3D memory
vault is s, the number of memory banks in each vault is b, the number of valuts
to be accessed in parallel is nv. To achieve the optimal dynamic data layout, h
is calculated based on the equation below:

h =


nv · sb/m if 0 < m < sb

tdiff row

tin row
;

nv · tdiff bank/tin row if sb
tdiff row

tin row
≤ m < sb ;

nv · tdiff row/tin row if m ≥ sb.

(1)

Note that w = s/h. The permutation network will be employed for permut-
ing the data in these blocks locally. Due to the limitation of space, we cannot
give all the relevant details. For more information, please refer our previous work
in [6].

4.5 Metrics of Evaluation

We evaluate the performance of 2D FFT on 3D memory integrated FPGA with
respect to the metrics throughput and latency for the entire application.

Throughput: defined as the maximum bandwidth of the memory supported
by the application. It is measured in Giga Bytes per second (GB/s). Since our
architecture is streaming data every cycle, the bandwidth at which memory
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Table 1: Throughput Comparison: Column-wise FFT

1024 × 1024

2D FFT

4096 × 4096

2D FFT

8192 × 8192

2D FFT

Throughput of

column-wise FFT (Baseline)
6.4 Gb/s 3.2 Gb/s 3.2 Gb/s

Peak bandwidth utilization 1.00% 0.5% 0.5%

Throughput of

column-wise FFT (Optimized)
32 GB/s 25.6 GB/s 23.04 GB/s

Peak bandwidth utilization 40.0% 32.0% 28.8%

operates determines the total execution time of the application. Therefore, higher
the throughput, lower the execution time.

Latency: defined as the time elapsed between accessing first input from the
memory and the time at which the first output is generated by the FFT kernel.
We measure latency in the unit of ns. This penalty is paid just once and at the
beginning of the processing. As we employ a streaming architecture, after the
first output is generated, the subsequent outputs are generated every cycle of
operation.

5 Experimental Results

Before evaluating the performance of the entire design, we separately estimate
the throughput for both the baseline and the optimized architecture for the 3D
architecture described in Section 3. Table 1 shows the throughput performance
of the 3D memory before and after the proposed optimization. There is no much
performance difference between the baseline architecture and the optimized ar-
chitecture regarding memory access by row-wise 1D FFTs. The reason for that
is the system throughput is almost not affected by row-wise 1D FFTs in both
architectures. From the Table 1, it shows that performance loss for column-wise
FFT increases with a larger problem size. Through the proposed optimization,
the peak bandwidth utilization is improved to 40.0%, 32.0%, and 28.8% for
1024 × 1024, 4096 × 4096 and 8192 × 8192 size 2D FFTs respectively.

In order to give a thorough view of the performance of the complete 2D
FFT implementation, we evaluate the entire system architecture based on our
memory model and our actual implementation of 2D FFT design on FPGA.
Table 2 presents the throughput and latency performance comparison between
the baseline 2D FFT architecture and the optimized 2D FFT architecture. It
shows that the optimized 2D FFT architecture achieves 32.0, 25.6 and 23.0 GB/s
in throughput for 1024× 1024, 4096× 4096 and 8192× 8192 problem sizes,
respectively. The throughput performance is improved by 95.1%, 97.0%, 96.6%
for 1024×1024, 4096×4096 and 8192×8192 point 2D FFT, respectively. The
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Table 2: Performance Comparison: Entire 2D FFT application

Baseline architecture Optimized architecture

FFT

size

Throughput

(GB/s)

Latency

(ns)

Data Parallelism

# elements

Throughput

(GB/s)

Latency

(ns)

Data Parallelism

# elements

Performance

improvement

(throughput)

1024 × 1024 16.4 1.60 ms 32 32.0 524 µs 32 95.1%

4096 × 4096 13.0 7.48 ms 32 25.6 2.4 ms 32 97.0%

8192 × 8192 11.7 145.4 ms 32 23.0 46.6 ms 32 96.6%

latency is reduced by up to 3x by using our proposed optimizations. Comparing
the results of the throughput in the 1D FFT kernel and the entire 2D FFT
architecture, we observe that the optimization for 3D memory access makes a
major contribution in the performance improvement. Moreover, the sustained
throughput of the optimized 2D FFT architecture achieves up to 40% of the
peak memory bandwidth, which is an upper bound on the performance of the
chosen FFT algorithm and 3D system architecture. Note that when calculating
the peak memory bandwidth, we ignored the run-time behavior of the target
applications.

6 CONCLUSION

In this paper, we proposed dynamic data layout optimizations to obtain a high
throughput 2D FFT architecture on 3D memory integrated architecture. The
proposed architecture achieves high throughput by maximizing and balancing
the bandwidth between the external memory and FFT kernel on FPGA. By
proposing the dynamic data layouts realized with the on-chip permutation net-
work, the delay caused due to row activation overhead is highly reduced, thus
leading to significant performance improvement. The experimental results com-
paring with the baseline architecture show that our implementation outperforms
in throughput and latency. In the future, we plan to build a design framework
targeted at throughput-oriented signal processing kernels, which enables auto-
matic data layout optimizations addressing new 3D memory technologies.
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