
Noname manuscript No.
(will be inserted by the editor)

Optimal Dynamic Data Layouts for
2D FFT on 3D Memory Integrated FPGA

Ren Chen · Shreyas G. Singapura ·
Viktor K. Prasanna

Received: date / Accepted: date

Abstract FPGAs have been widely used for accelerating various applications.
For many data intensive applications, the memory bandwidth limits the per-
formance. 3D memories with through-silicon-via connections provide potential
solutions to the latency and bandwidth limitations. In this paper, we revisit
the classic 2D FFT problem to evaluate the performance of 3D memory in-
tegrated FPGA. To fully utilize the fine grained parallelism in 3D memory,
data layouts which take into account the structure and organization of the
memory are required. We propose dynamic data layouts for optimizing the
performance of the 3D architecture. In 2D FFT, data is accessed in row major
order in the first phase whereas, the data is accessed in column major order
in the second phase. This column major order results in high memory latency
and low bandwidth due to high row activation overhead of memory. Using the
proposed dynamic data layouts, we improve memory access performance in the
second phase without degrading the performance of the first phase. With par-
allelism employed in the third dimension of the memory, data parallelism can
be increased to further improve the performance. We adopt a model based ap-
proach for 3D memory and we perform experiments on the FPGA to validate
our analysis and evaluate the performance. Compared with the baseline archi-
tecture, our approach achieves up to 40× peak memory bandwidth utilization

This material was supported by the NSF under Grant Number ACI-1339756

Ren Chen, Shreyas G. Singapura and Viktor K. Prasanna
University of Southern California, Los Angeles, CA 90089, USA

Ren Chen
E-mail: renchen@usc.edu

S. G. Singapura
E-mail: singapur@usc.edu

V. K. Prasanna
E-mail: prasanna@usc.edu

2 Chen et al.

for column-wise FFT, thus resulting in approximately 97% improvement in
throughput for the complete 2D FFT application.

1 Introduction

FPGAs have been used as accelerators for many applications such as Signal
Processing, Image Processing, Packet classification etc [1–5]. The general pur-
pose processors cannot keep up with the demands of these applications in
terms of performance. Even with the high performance of FPGAs, meeting
the throughput requirement of these applications is a challenging task. Most
of the applications are data intensive and this translates to frequent accesses
to the memory. The bottleneck in these cases is the low bandwidth and high
latency of the memory.

3D memory has been widely studied in the research community with the
high bandwidth and short latency access being the important parameters.
3D memories consist of stack of layers connected using Through Silicon Vias
(TSVs) [6]. The high speed vertical TSVs along with the third dimension of
memory result in short latencies and packs in large memory sizes compared
to the conventional 2D memories. Although 3D memories are expected to
provide 10× bandwidth compared to 2D memory, this is subject to the ideal
conditions. These include data layouts which reduce row activation overhead,
high page hit rate for stride access, etc. These problems are similar to the
issues in the conventional planar memories. But, employing the solutions in
the context of 3D memory is not trivial due to the structure and organization
of 3D memory.

In this paper, we target 2D FFT application on 3D memory integrated
FPGA and evaluate its performance using throughput and latency as the
metrics. 2D FFT is a data intensive application with stride memory access
patterns. 2D FFT consists of two phases and the access patterns in the two
phases require different data layouts to achieve high performance. The ideal
data layout in the first phase is row major data layout whereas, the second
phase requires a column major data layout. Therefore, a static data layout
which improves the performance in one phase will lower the performance in
the other phase and vice-versa. The main reasons for this low performance
are high number of row activations and low page hit rate. Therefore, with a
static data layout the true capability of 3D memory cannot be realized. We
address this problem by extending our solution of dynamic data layouts [7] to
3D memory. The main contributions in this paper are:

1. Model the 2D FFT application on 3D memory integrated FPGA.
2. Develop optimal dynamic data layouts to optimize performance of 2D FFT

on 3D memory.
3. Evaluation of optimized and baseline implementation with throughout and

latency as the performance metrics.

Optimal Dynamic Data Layouts for 2D FFT on 3D Memory Integrated FPGA 3

Memory Layers

FPGA Layer

Memory Controller

B

Memory
Controller

 Lm

1

2

3

4

5

Fig. 1: (a) 3D MI-FPGA Architecture (b) 3D Memory

2 Related Work

As the well-known simplest multidimensional FFT algorithm, the row-column
algorithm has been commonly used to implement 2D FFT by performing a
sequence of 1D FFTs [5, 8]. In this algorithm, input elements in an N × N
array are stored in row-major order in the external memory such as DRAM.
One major issue in the implementation of the 2D FFT architecture is the con-
siderable delay caused by DRAM row activation which are mainly introduced
by the strided memory access in the column wise 1D FFTs. To solve this prob-
lem, the authors in [3] propose a tiled data mapping method to improve the
external memory bandwidth utilization. They logically divide the input N×N
input array into N

k × N
k tiles and map the elements in each tile to consecutive

memory locations. They conclude that the DRAM bandwidth utilization is
maximized when the size of each tile is set to be the size of the DRAM row
buffer. The authors in [9] extend the block data layout to 3D memory as well.
However, this solution introduces non-trivial on-chip hardware resource cost
for local transposition. Various traditional 2D memory based 2D FFT archi-
tectures achieving high throughput performance have been developed in [5,10].
In [5], the authors propose a 2D decomposition algorithm which enables local
2D FFT on sub-blocks. In this way, the times of DRAM row activation is
minimized. Vector radix 2D FFT in [10] presents a general structure theorem
to construct a multi-dimensional FFT architecture by decomposing a large
size problem into small size 2D FFTs. The external memory row activation
overhead is not considered.

3D memory is expected to provide bandwidth higher than the 2D memory
by an order of magnitude. There have been many works which have focused on
this aspect of 3D memory. [11] implements matrix multiplication and 2D FFT
on a Logic-in-Memory architecture. The architecture consists of a logic layer
interleaved between two segments of memory layers to form a 3D architecture.
The performance metrics are energy efficiency and bandwidth. In [12], the
authors develop power efficient FFT on an architecture consisting of memory
layers stacked on multiple FPGA layers. The authors focus on energy efficiency
improvement while moving to a 3D architecture from a 2D architecture.

4 Chen et al.

3 3D Memory Integrated FPGA (3D MI-FPGA)

3.1 Architecture Overview

Our model of 3D architecture consists of 3D memory integrated with FPGA
interacting through TSVs. We extend our previous work on 3D architectures
[13, 14]. Here, we provide a brief overview of 3D Memory Integrated FPGA
(3D MI-FPGA). The architecture consists of three components: 3D memory,
FPGA and TSVs. Fig. 1 illustrates the architecture of 3D memory integrated
FPGA. The memory is composed of several layers (Lm) vertically stacked one
above the other. Each of these layers is partitioned into several banks. Vaults
(V) are defined as the group of banks (1, 2, 3, 4 in Fig. 1) across layers which
share a set of interconnects (TSVs). This set of banks residing on one layer
which belong to the same vault (B) is analogous to the number of banks in a
chip in the 2D memory. These set of banks share the bus in 2D memory and
they share the TSVs in the 3D memory architecture. This set of TSVs shared
by the banks in a vault is denoted by Ntsv. Each vault has a dedicated memory
controller which handles the memory accesses to that particular vault. These
memory controllers form a separate layer in the memory. Different vaults can
be activated at the same time as they do not share the TSVs. On the other
hand, the banks in a given vault share the TSVs and the activation of these
banks has to be pipelined or interleaved as in the case of 2D memory. Denoting
by BWvault the bandwidth of a vault, the peak bandwidth of 3D memory is
V×BWvault. The FPGA architecture is similar to that of the conventional
FPGA consisting reconfigurable logic, DSP blocks, on-chip memory (Block
RAM and Distributed RAM) and memory controllers. The difference is that
we model the FPGA to interact with the memory through the set of TSVs
connecting the FPGA and the memory. These TSVs are between memory
controllers on FPGA and those in the memory. FPGA accesses the data in
the memory through the TSVs which are high speed, low latency vertical
interconnects. The TSVs are characterized by the number of TSVs and latency
of data transfer across them. These two parameters affect the amount of data
that can be transferred between memory and FPGA in a given unit of time.
Each TSV can transfer 1 bit of data at a time.

3.2 Timing Parameters

Bandwidth and latency of access to the 3D memory depend on a certain set
of timing parameters and we discuss these in this section. Data in the 3D
memory is stored in rows which combine to form a bank and a set of banks
form a vault. Therefore, each row belongs to a specific bank and vault. When
the memory is accessed, depending on the address, a specific row, bank and
vault are activated. Therefore, although some of the parameters overlap with
that of the 2D memory, certain additional parameters have to be defined taking

Optimal Dynamic Data Layouts for 2D FFT on 3D Memory Integrated FPGA 5

into account the architecture and different accesses possible in the context of
a 3D memory. We model the 3D memory using the following parameters:

1. tdiff-row: minimum time required between issuing two successive activate
commands to different rows in the same bank

2. tdiff-bank: minimum time required between successive activate commands
to different rows in different banks in the same layer in the same vault

3. tin-row: minimum time required between successive accesses to elements in
the same row in the same bank

4. tin-vault: minimum time required between accesses to different rows in dif-
ferent banks in different layers in the same vault

The values of the above parameters have a significant impact on latency
and bandwidth of the 3D memory. In general, data from different vaults can
be accessed simultaneously with zero delay between the accesses. Hence, a
parameter such as tdiff-vault is not defined. This is because, since vaults are
completely independent and can be active at the same time, this parameter is
equal to zero. Since the banks located in different layers but belonging to the
same vault can be activated in a pipeline, this latency (tin-vault) is lower than
that of accessing data from banks belonging to the same layer and same vault.
Other parameters are similar to the parameters of 2D memory. Therefore,
accessing data from the same row in a bank (tin-row) is faster than accessing
data from two rows in different banks (tdiff-bank). The highest latency is seen
when we access data from two different rows in the same bank in the same
vault denoted by tdiff-row.

4 2D FFT Architecture

4.1 1D FFT Kernel

An N -point (floating-point) 1D FFT kernel is implemented by concatenating
several basic components including radix block, data path permutation (DPP)
unit, and twiddle factor computation (TFC) unit. The design of each architec-
ture component relies on the FFT algorithm in use and will be described in
this section. We applied the energy optimizations discussed in [4,15,16] to the
components to reduce their energy consumption. The 1D FFT kernel supports
processing continuous data streams to maximize design throughput and the
memory bandwidth utilization.

4.1.1 Radix block

The radix block is used to perform a butterfly computation on the input sam-
ples. For example, the radix block for radix-4 FFT takes four input samples,
performs the butterfly computation and then generates four results in parallel.
Each radix block is composed of complex adders and subtractors. The struc-
ture of a radix block is determined by the FFT algorithm in use. Fig. 2a shows
the structure of radix block for radix-4 FFT.

6 Chen et al.

+

+

+

+

x[0]

x[1]

x[2]

x[3]

y[0]

y[1]

y[2]

y[3]

1
j

-1

-j

1 -1

1

-1

1
-j

1

-1

(a)

Control signals Control signals

Data
buffer

Front crossbar
switches

Back crossbar
switches

(b)

…...

MUX

X

ROM 0 ROM 1 ROM 2

(c)

Fig. 2: (a) Radix-4 block (b) Datapath Permutation unit (c) Twidlle Factor
Coeffcient unit

4.1.2 Datapath Permutation (DPP) Unit

DPP unit is used for data permutation between butterfly computation stages
in FFT. A DPP unit is composed of multiplexers and data buffers. In subse-
quent clock cycles, data from previous butterfly computation stage are first
multiplexed and written into several data buffers. Each stored data element
will be buffered for a fixed number of clock cycles and then read out. The
size of each data buffer depends on the ordinal number of its present butterfly
computation stage and the FFT problem size. Outputs from data buffers will
also be multiplexed and fed into the next butterfly computation stage. Fig. 2b
shows the DPP unit used for a radix-4 based FFT design. Each DPP unit
consists of eight 4-to-1 multiplexers and four data buffers. In each cycle, a
data buffer may be read and written simultaneously using different addresses.

4.1.3 Twidle Factor Coefficient (TFC) Unit

A TFC unit consists of two parts: the TFC generation logic and the complex
number multiplier. As shown in Fig. 2c, the TFC generation logic includes
several lookup tables (functional ROMs) for storing twiddle factor coefficients,
where the data read addresses will be updated with the control signals. The
size of each lookup table is determined by the ordinal number of its present but-
terfly computation stage and the FFT problem size. Each lookup table can be
implemented using a BRAM or distributed RAM (dist. RAM) on FPGA [17].
Each complex number multiplier consists of four real number multipliers and
two real number adders/subtractors.

The proposed 2D FFT architecture is shown in Fig. 3, in which a Control-
ling Unit (CU) and a permutation network are introduced. The permutation
network is developed based on our work in [1]. The CU is responsible for
reconfiguring the permutation network to achieve the dynamic data layout.

4.2 Baseline Architecture

In the baseline architecture, when performing column-wise 1D FFTs, memory
address is increased with a stride equal to N for a FFT of problem size N ×

Optimal Dynamic Data Layouts for 2D FFT on 3D Memory Integrated FPGA 7

Vault 1
Memory

Controllers

1-8

Memory

Controllers

9-16

1-D FFT

Kernel

Permutation

Network

Permutation

Network

Controlling Unit

Vault 8

Vault

16

Vault 9

1 element

1 element

1 element

1 element

8 elements

8 elements 8 elements

8 elements

Fig. 3: 2D FFT Processor Architecture

N after each memory access. However, a minimum activate-to-activate delay
(tdiff-row) exists when successively accessing two rows in the same bank or
accessing two banks in the same vault (tdiff-bank or tin-vault). These delays
result in a decline in 3D memory bandwidth utilization, and consequently the
entire system throughput is affected.

4.3 Optimized Architecture

In the optimized architecture, the Controlling Unit (CU) is responsible for
reconfiguring the permutation network dynamically to ensure data results of
row-wise 1D FFTs are mapped onto the different vaults using the optimal
dynamic data layout. Through this data remapping, activation of a different
row will be only needed after several successive accesses on a row. This is in
contrast to the baseline architecture, where every memory access results in
a different row being activated. Thus, the impact of row activations on the
entire system throughput is minimized. Furthermore, to reduce the overhead
due to row activation, data inputs of several consecutive column-wise 1D FFTs
are transferred from the 3D memory to the local memory on FPGA without
waiting for the completion of the 1D FFT.

4.4 Optimal Dynamic Data Layouts

Our work in this paper is based on the dynamic data layouts (DDL) devel-
oped for the traditional 2D external memory in [7] where the data layout
in memory is dynamically reorganized during computation. After reorganiza-
tions, non-unit stride accesses are converted to unit stride accesses, thereby
reducing cache misses. The data layout is optimal from the performance point
of view as it maximizes the memory bandwidth utilization. However, the data
reorganization overhead regarding the latency and on-chip SRAM buffer con-
sumption has not been considered. Figure 4 illustrate the key idea of our

8 Chen et al.

1-D FFT

Kernel

Memory Write Pattern for

Row-wise DFT

External Memory

1-D FFT

Kernel

Memory Read Pattern for

Colun-wise DFT

External Memory

...

Address

space

External Memory

... ...

(a) Before data remapping

1-D FFT

Kernel

Memory Write Pattern for

Row-wise DFT

External Memory

1-D FFT

Kernel

Memory Read Pattern for

Colun-wise DFT

External Memory

...

Address

space

External Memory

... ...

... ...

...

...

...

...

...

...
...

...

...

...

(b) Dynamic datalayout after data remapping

Fig. 4: Memory access patterns in 2-D FFT

proposed optimal dynamic data layouts in [18]. As shown in Figure 4, stride
access is required for executing column-wise DFT without data remapping, as
a result, the throughput for reading external memory declines significantly. By
developing a data remapping approach, we proposed the optimal dynamic data
layouts for 2D memory shown in Figure 4b such that peak memory bandwidth
utilization is achieved with minimal data reorganization overhead. The data
reorganization overhead is evaluated using the reorganizing latency and the
on-chip buffer consumption. We further optimized our approach in [18] for the
structure and organization of 3D memory based architecture. The data is dis-
tributed across all the vaults of the memory to increase the number of parallel
accesses to the memory. The number of elements which can be accessed in one
clock cycle of the FPGA depends on the data layout of the elements in the
memory. This in turn affects the number of row activations and consequently
the latency and throughput of the application. In the baseline architecture,
row major order data layouts are employed. In our approach, instead of map-
ping results of row-wise FFTs to 3D memory in row major order, we employ
block-based dynamic data layout, and the results are read block-by-block by
the column-wise 1D FFT. The dynamic data layout is organized into blocks,
each of size w×h. w and h represent the width and height of the block, respec-
tively. w is dynamically determined by the stride permutation to be performed
in 1D FFTs. We denote the row buffer size in each bank of the 3D memory
by s, the number of memory banks in each vault by b, the number of vaults

Optimal Dynamic Data Layouts for 2D FFT on 3D Memory Integrated FPGA 9

accessed in parallel by nv. For a stride of value m, to achieve the optimal
dynamic data layout, h is calculated based on the equation below:

h =

nv if 0 < m < sb

tdiff bank

tdiff row
;

nv · tdiff bank/tin row if sb
tdiff bank

tdiff row
≤ m < sb ;

nv · tdiff row/tin row if m ≥ sb.

(1)

The first condition in the Equation 1 represents the scenario where stride
permutation results in accesses to the same row in a bank. This results in
the lowest latency of tin-row for each access. The second condition implies that
the stride permutation causes different banks to be accessed and hence the
latency for this access block of h is tdiff-bank. Lastly, the stride permutation is
large enough so that the consecutive accesses are to the same bank and this
is condition has the highest latency of tdiff-row. The value of h and hence the
block size (w = s/h) varies with each of these conditions and results in the
minimum number of row activations. It should be noted that we distribute the
data across all banks in a vault and across all vaults. Since 3D memory allows
for parallel access to multiple vaults, our approach maximizes the number of
page hits and thereby extracts maximum bandwidth from the 3D memory.

4.5 Metrics of Evaluation

We evaluate the performance of 2D FFT on 3D memory integrated FPGA
with respect to the metrics throughput and latency.

Throughput: defined as the maximum bandwidth of the memory sup-
ported by the application. It is measured in Giga Bytes per second (GB/s).
Since our architecture is streaming data every cycle, the bandwidth at which
memory operates determines the total execution time of the application. There-
fore, higher the throughput, lower the execution time.

Latency: defined as the time elapsed between accessing first input from the
memory and the time at which the first output is generated by the FFT kernel.
We measure latency in the unit of ns. This penalty is paid just once and at
the beginning of the processing. As we employ a streaming architecture, after
the first output is generated, the subsequent outputs are produced in every
cycle of operation of FPGA.

5 Experimental Results

The architecture parameters of the 3D memory used in model based perfor-
mance analysis are 8 vaults (V), with 10 GB/s bandwidth per vault (BWvault)
and an overall 80 GB/s peak bandwidth (V×BWvault) for the entire 3D mem-
ory. The timing parameters of the 3D memory are: 5 ns (tin-row), 8 ns (tdiff-bank)
and 40 ns (tdiff-row). The 2D FFT architecture is implemented on state of the
art FPGA Virtex 7 [17] and simulations were conducted using Xilinx Vivado
2014.2 development tools. Data parallelism of 32 is implemented for a data

10 Chen et al.

Table 1: Throughput Comparison: Column-wise 1D FFT

1024 × 1024

2D FFT

4096 × 4096

2D FFT

8192 × 8192

2D FFT

Throughput of

column-wise FFT (Baseline)
0.8 GB/s 0.4 GB/s 0.4 GB/s

Peak bandwidth utilization 1.00% 0.5% 0.5%

Throughput of

column-wise FFT (Optimized)
32 GB/s 25.6 GB/s 23.04 GB/s

Peak bandwidth utilization 40.0% 32.0% 28.8%

precision of 32 bits for each element. In order to give a thorough view of the
performance of the 2D FFT implementation, we evaluate the system architec-
ture combining the model based performance analysis of the 3D memory and
the implementation of 2D FFT on FPGA.

Before evaluating the performance of the entire 2D FFT design, we es-
timate the throughput for the row-wise 1D FFT and column-wise 1D FFT
separately. In the row-wise 1D FFT, the performance of the baseline archi-
tecture matches with that of the optimized architecture. This is attributed to
the fact that the memory accesses of the baseline and optimized architectures
are identical, i.e., sequential with the consecutive accesses to the same row.
This results in the minimum number of row activations. In the second phase,
i.e., column-wise 1D FFT, the difference in performance is significant. Table 1
shows the throughput performance of the 3D memory for baseline and opti-
mized architectures. Table 1 shows that the column major access pattern and
the row major data layout result in a very low throughput of a meager 0.8
GB/s for N = 1024 for the baseline architecture. With the optimized archi-
tecture of dynamic data layouts, for the same problem size, the 3D memory
is able to sustain the bandwidth requirement of FFT kernel on FPGA and
results in a throughput of 32 GB/s. It is also seen that the performance for
column-wise FFT decreases with a larger problem size. This is because, with
a problem size of N = 1024 and a row size of 16384 bits, 8 elements of 32 bits
can be accessed in a time period of tdiff-row from 8 vaults. With N = 4096 or
N = 8192, only 4 elements can be accessed from 8 vaults in the same time
period due to row major data layout. This problem is mitigated with the use
of dynamic data layouts and the performance drop in optimized architecture
is due to the drop in frequency of operation of FPGA. Through the proposed
optimization, the peak bandwidth utilization is improved to 40.0%, 32.0%, and
28.8% for 1024×1024, 4096×4096 and 8192×8192 size 2D FFTs respectively.

Table 2 presents the throughput and latency performance comparison be-
tween the baseline architecture and the optimized architecture for the complete
2D FFT application. The throughput of the baseline architecture is effectively
halved due to the performance in column-wise 1D FFT phase. Using our pro-
posed dynamic data layouts, the performance of the optimized architecture re-

Optimal Dynamic Data Layouts for 2D FFT on 3D Memory Integrated FPGA 11

Table 2: Performance Comparison: Complete 2D FFT application

Baseline architecture Optimized architecture

FFT

size

Throughput

(GB/s)
Latency

Data Parallelism

elements

Throughput

(GB/s)
Latency

Data Parallelism

elements

Performance

improvement

(throughput)

1024 × 1024 16.4 1.60 ms 32 32.0 524 µs 32 95.1%

4096 × 4096 13.0 7.48 ms 32 25.6 2.4 ms 32 97.0%

8192 × 8192 11.7 145.4 ms 32 23.0 46.6 ms 32 96.6%

mains the same in both the phases and hence, the overall throughput remains
high as shown in Table 2. The optimized architecture achieves a throughput of
32.0, 25.6 and 23.0 GB/s compared with the 16.4, 13.0, 11.7 GB/s performance
of the baseline architecture for 1024×1024, 4096×4096 and 8192×8192 prob-
lem sizes, respectively. The throughput performance is improved by 95.1%,
97.0%, 96.6% for 1024×1024, 4096×4096 and 8192×8192 point 2D FFT, re-
spectively. Similar analysis of the performance in terms of latency reveals that
the latency of the optimized architecture is reduced by up to 3× by using our
proposed optimizations. Comparing the results of the throughput in the 1D
FFT kernel and the entire 2D FFT architecture, we observe that the optimiza-
tion for 3D memory access makes a significant contribution to the performance
improvement. Moreover, the sustained throughput of the optimized 2D FFT
architecture achieves up to 40% of the peak memory bandwidth, which is an
upper bound on the performance of the chosen FFT algorithm and 3D system
architecture.

6 CONCLUSION

In this paper, we proposed dynamic data layout optimizations to obtain a high
throughput 2D FFT architecture on 3D memory integrated architecture. The
proposed architecture achieves high throughput by maximizing and balancing
the bandwidth between the external memory and FFT kernel on FPGA. By
proposing the dynamic data layouts realized with the on-chip permutation
network, the delay caused due to row activation overhead is highly reduced,
thus leading to significant performance improvement. The experimental re-
sults comparing with the baseline architecture show that our implementation
outperforms in throughput and latency. In the future, we plan to build a
design framework targeted at throughput-oriented signal processing kernels,
which enables automatic data layout optimizations addressing new 3D memory
technologies.

References

1. Ren Chen and Viktor K. Prasanna. Energy and Memory Efficient Bitonic Sorting on
FPGA. In Proc. of ACM/SIGDA FPGA, pages 45–54, 2015.

12 Chen et al.

2. Ren Chen and Viktor K. Prasanna. Automatic generation of high throughput energy
efficient streaming architectures for arbitrary fixed permutations. In Proc. of IEEE
Conference on Field Programmable Logic and Applications (FPL), pages 1–8. IEEE,
2015.

3. Berkin Akin, Peter A. Milder, Franz Franchetti, and James C. Hoe. Memory Band-
width Efficient Two-Dimensional Fast Fourier Transform Algorithm and Implementa-
tion for Large Problem Sizes. In Proc. of IEEE International Symposium on Field-
Programmable Custom Computing Machines (FCCM ’12),, pages 188–191, April 2012.

4. Ren Chen and Viktor K. Prasanna. Energy Efficient Parameterized FFT Architecture.
In Proc. of IEEE International Conference on FPL, 2013.

5. Jung Sub Kim, Chi-Li Yu, Lanping Deng, Srinidhi Kestur, Vijaykrishnan Narayanan,
and Chaitali Chakrabarti. FPGA Architecture for 2D Discrete Fourier Transform based
on 2D decomposition for large-sized data. In Proc. of IEEE Workshop on Signal Pro-
cessing Systems, pages 121–126, Oct 2009.

6. Hybrid Memory Cube Consortium. Hybrid Memory Cube Specification. http:

//hybridmemorycube.org/files/SiteDownloads/HMC_Specification%201_0.pdf.
7. Neungsoo Park and Viktor K. Prasanna. Dynamic Data Layouts for Cache-Conscious

Implementation of a Class of Signal Transforms. IEEE Transactions on Signal Process-
ing, 52(7):2120–2134, July 2004.

8. Wendi Wang, Bo Duan, Chunming Zhang, Peiheng Zhang, and Ninghui Sun. Accel-
erating 2D FFT with Non-Power-of-Two Problem Size on FPGA. In Proc. of IEEE
International Conference on Reconfigurable Computing and FPGAs (ReConFig ’10),
pages 208–213, Dec 2010.

9. Berkin Akin, Franz Franchetti, and James C. Hoe. Understanding the Design Space of
Dram-optimized Hardware FFT Accelerators. In Application-specific Systems, Archi-
tectures and Processors (ASAP), 2014 IEEE 25th International Conference on, pages
248–255. IEEE, 2014.

10. Hong Ren Wu and Frank John Paoloni. The Structure of Vector Radix Fast
Fourier Transforms. IEEE Transactions on Acoustics, Speech and Signal Processing,
37(9):1415–1424, Sep 1989.

11. Qiuling Zhu, Berkin Akin, H Ekin Sumbul, Fazle Sadi, James C Hoe, Larry Pileggi, and
Franz Franchetti. A 3D-Stacked Logic-in-Memory Accelerator for Application-Specific
Data Intensive Computing. In Proc. of IEEE International Conference on 3D Systems
Integration Conference (3DIC), pages 1–7. IEEE, 2013.

12. Peter Gadfort, Aravind Dasu, Ali Akoglu, Yoon Kah Leow, and Michael Fritze. A Power
Efficient Reconfigurable System-in-Stack: 3D Integration of Accelerators, FPGAs, and
DRAM. In Proc. of IEEE International Conference on System-on-Chip Conference
(SOCC), pages 11–16. IEEE, 2014.

13. Shreyas G. Singapura, Anand Panangadan, and Viktor K. Prasanna. Towards Perfor-
mance Modeling of 3D Memory Integrated FPGA Architectures. In Proc. of Interna-
tional Conference on Applied Reconfigurable Computing. 2015.

14. Shreyas G. Singapura, Anand Panangadan, and Viktor K. Prasanna. Performance Mod-
eling of Matrix Multiplication on 3D Memory Integrated FPGA. In Proc. of 22nd
Reconfigurable Architectures Workshop, IPDPDS. 2015.

15. Ren Chen and Viktor K. Prasanna. Energy-efficient Architecture for Stride Permutation
on Streaming Data. In Proc. of IEEE Conference on ReConFig, pages 1–7, 2013.

16. Ren Chen, Neungsoo Park, and Viktor K. Prasanna. High Throughput Energy Efficient
Parallel FFT Architecture on FPGAs. In Proc. of IEEE High Performance Extreme
Computing Conference (HPEC), pages 1–6. IEEE, 2013.

17. Virtex-7 FPGA Family. http://www.xilinx.com/products/virtex7.
18. Ren Chen and Viktor K. Prasanna. DRAM Row Activation Energy Optimization for

Stride Memory Access on FPGA-based Systems. In Proc. of International Conference
on Applied Reconfigurable Computing. 2015.

19. Stefan Langemeyer, Peter Pirsch, and Holger Blume. Using SDRAMs for Two-
Dimensional Accesses of Long 2n × 2m-point FFTs and Transposing. In Proc. of In-
ternational Conference on Embedded Computer Systems (SAMOS ’11), pages 242–248,
July 2011.

http://hybridmemorycube.org/files/SiteDownloads/HMC_Specification%201_0.pdf
http://hybridmemorycube.org/files/SiteDownloads/HMC_Specification%201_0.pdf

	Introduction
	Related Work
	3D Memory Integrated FPGA (3D MI-FPGA)
	2D FFT Architecture
	Experimental Results
	CONCLUSION

