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ABSTRACT
Accurate estimation and evaluation of consumption reduc-
tion achieved by participants during Demand Response is
critical to Smart Grids. We perform an in-depth study
of popular estimation methods used to determine the ex-
tent of consumption shedding during DR, using a real-world
Smart Grid dataset from the University of Southern Califor-
nia campus microgrid. We provide insights to the process
of selecting a reasonable baseline with respect to potential
misinterpretation of the estimation of electricity consump-
tion reduction during DR.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Time Series Analysis;
H.4.m [Information Systems Applications]: Miscella-
neous
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1. INTRODUCTION
In this work, we statistically analyze the effect of Base-

line Load Profile (BLP) models on the interpretation of con-
sumption reduction as a result of Demand Response (DR)
[6, 10] using real-world data from the University of Southern
California (USC) microgrid, with the objective of improv-
ing the accuracy of estimating electricity demand reduction
due to participation in DR programs. Accurate estimation
and evaluation of consumption reduction achieved by partic-
ipants during curtailment is critical to DR programs [6], par-
ticularly when participation is voluntary [1]. The amount of
computed curtailment depends on the accuracy of the base-
line model used. As many baseline models exist, different
curtailment estimates can be derived. The problem with
calculating BLP model accuracy, lies mainly in the fact that
there is no actual reference value to compare against. We ar-
gue that without careful consideration, utility providers can
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end up with erroneous data on the actual curtailment which
can in turn lead to billing or rewarding issues. We show that
choosing a good baseline depends on both intrinsic (e.g., DR
strategy, day of week) and extrinsic (e.g., temperature, hu-
man behavior) factors. To the best of our knowledge, our
work is the first to provide an in-depth comparative anal-
ysis of the effect of BLP models for post DR analysis in a
real-world, large-scale setting.

2. REAL-WORLD CASE STUDY
We consider a real-world Smart Grid dataset from the

University of Southern California campus microgrid1. The
dataset comprises of a collection of observed electricity con-
sumption values (measured in kWh at every 15 minutes)
from 35 diverse buildings, collected over a one year period
(November 2012 - December 2013) [3]. Using our real-world
dataset, we benchmark a set of BLPs: Auto Regressive Inte-
grated Moving-Average (ARIMA) [5], New York ISO (NY-
ISO) [8], Southern California Edison ISO (CASCE) [9], Cal-
ifornia ISO (CAISO) [2] and a modified version that intro-
duces a morning adjustment factor (CAISOm) [6], and Fixed
Value (i.e., the consumption value just prior to the beginning
of the DR event is used as the predictor).

We examine the performance of a baseline in terms of bias,
i.e., dominance of positive or negative predictions, and accu-
racy, i.e., average absolute percent error. To measure model
bias, we measure the median of the distribution of errors.
Intuitively, the closest to zero the median of the error is, the
more unbiased the model. We measure average deviance
between predicted consumption, fc15t , and actual consump-
tion, ac15t , on non-DR days (between 1-5pm, for consistency

with DR days), as MPE = 100
n

∑n
t=1

fc15t −ac15t
ac15t

. We found

CASCE to perform the best among all BLPs, achieving good
MAPE values while at the same time being the least biased.

3. ACHIEVING A CURTAILMENT GOAL
To shed light on the effect of baseline selection on the in-

terpretation of consumption reduction estimation and eval-
uation due to DR programs, we consider DR events in which
all buildings participate, each following a random DR strat-
egy (e.g., Duty Cycling, Variable Frequency Drive [7], Global
Temperature Reset [7]). In order to ensure that randomly
selecting a strategy for each building does not affect our find-
ings, we repeated the experiment, with the difference that
the“best”strategy per building was used. Evidently, curtail-
ment estimation is highly correlated to the baseline selected

1The dataset is available upon request for academic use from
the USC Facility Management Services (FMS).
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Figure 1: Aggregate curtailment over all buildings.

for analysis. Therefore more effort should be allocated in
the following areas of research. First, better baseline meth-
ods that can be applied to all customers without exhibiting
volatility to external factors would be highly desirable. If
a “one solution fits all” is not possible, developing a frame-
work that would adapt to individual household attributes
so as to select the “best” performing baseline method for
each individual customer would be advisable. Learning to
switch between baselines as time progresses to adapt to cus-
tomers (changing) behavior would also be beneficial, but at
the same time computationally expensive.

Instead of estimating what the consumption would have
been in the absence of DR (i.e., baseline consumption), and
then calculating the difference between such estimate and
the actual consumption during DR, computational methods
for reduced consumption prediction would be beneficial. The
advantage of such an approach is twofold. First, reduced
consumption prediction does not require a baseline calcu-
lation. Instead, observed curtailed consumption from past
events could be used to predict future curtailed consump-
tion. Second, predicted values would be directly comparable
against observed consumption during DR for a fair perfor-
mance evaluation. Some works [4] have already proposed
solutions towards this direction. Our findings motivate an
exploration of promising future work.

The drawback of our work is that it only considers a sin-
gle regional scenario, even though our analysis involves a
heterogeneous collection of buildings with diverse functions
and purpose, covering a wide percentage of consumer demo-
graphics. Considering scenarios on a per-household basis, as
well as including more diverse customer types (e.g. indus-
trial or residential) would strengthen our study.
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