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Abstract—Recently, FPGA implementation of graph algo-
rithms arising in many areas such as social networks has been
studied. However, the irregular memory access pattern of graph
algorithms makes obtaining high performance challenging. In
this paper, we present an FPGA implementation of the classic
PageRank algorithm. Our goal is to optimize the overall system
performance, especially the cost of accessing the off-chip DRAM.
We optimize the data layout so that most of memory accesses to
the DRAM are sequential. Post-place-and-route results show that
our design on a state-of-the-art FPGA can achieve a high clock
rate of over 200 MHz. Based on a realistic DRAM access model,
we build a simulator to estimate the execution time including
memory access overheads. The simulation results show that our
design achieves at least 96% of the theoretically best performance
of the target platform. Compared with a baseline design, our
optimized design dramatically reduces the number of random
memory accesses and improves the execution time by at least
70%.

Index Terms — FPGA, PageRank, Memory performance

I. INTRODUCTION

Graphs have become increasingly important to represent
real-world data, such as the World Wide Web and social
networks [1]. However, obtaining high performance for graph
processing is challenging. First, the datasets of real-world
graph problems are massive and can easily overwhelm the
computational and memory capabilities of the target platform
[2]. Second, graph algorithms exhibit irregular memory ac-
cesses [2]. This results in poor spatial and temporal locality of
memory accesses and a high data-access-to-computation ratio.
Therefore, the runtime is dominated by long-latency external
memory accesses.

Vertex-centric model [3] and edge-centric model [4] have
been proposed to facilitate graph processing. In both models,
the computation proceeds as a sequence of iterations. In the
vertex-centric model, in each iteration, each vertex whose data
has been updated sends the updated data to its neighbors; each
vertex which has incoming messages recompute its own data
based on the incoming messages. In the edge-centric model,
in each iteration, all the edges are first traversed to produce
updates, then the updates are iterated over and performed on
the corresponding vertices.
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PageRank [5] is a classic graph algorithm used to rank
websites. It provides an approach to measure the importance of
website pages and is widely used in search engines. According
to the algorithm, a website of higher importance has a higher
PageRank value. Both vertex-centric model and edge-centric
model can be used to implement the PageRank algorithm.

FPGA technologies have become an attractive option for
processing graph algorithms [6-10]. Recent works using
FPGA to accelerate graph processing can achieve consider-
able speedups compared to GPU and CPU systems [7], [8].
However, due to the irregular memory access pattern of the
graph algorithms, FPGA needs to perform many long-latency
random memory accesses to the external memory. As a result,
the processing elements on FPGA suffer many pipeline stalls,
resulting in significant performance deterioration.

In this paper, we present an FPGA implementation of the
PageRank algorithm. Our goal is to minimize the number of
random memory accesses to the external memory (DRAM) by
optimizing the data layout. Our main contributions are:

• We present an FPGA implementation of PageRank algo-
rithm, which can achieve a high clock rate of over 200
MHz.

• We optimize the data layout to minimize the number of
random memory accesses. By using our approach, most
memory accesses to the DRAM are sequential.

• Based on a realistic DRAM access model, we build
a simulator to estimate the system performance. The
simulation results show that our design achieves up to
96% of the theoretically best performance of the target
platform.

• Compared with a baseline design, our optimized design
dramatically reduces the number of pipeline stalls due to
DRAM accesses. The overall execution time is improved
by over 70%.

The rest of the paper is organized as follows. Section II in-
troduces the background and related work. Section III presents
the DRAM access model. Section IV discusses the algorithm
and our optimization. Section V describes the architecture.
Section VI reports experimental results. Section VII concludes
the paper.



II. BACKGROUND AND RELATED WORK

A. PageRank

The PageRank algorithm [5] is used in website search
engine to measure the importance of websites. In the PageRank
algorithm, websites are represented as vertices and links are
represented as edges. The PageRank algorithm outputs the
PageRank value of each vertex which indicates the likelihood
that the vertex will be reached by. A higher PageRank value
corresponds to higher importance.

The computation of the PageRank algorithm consists of
several iterations. In each iteration, each vertex v updates its
PageRank value based on Formula (1).

PageRank(v) = 1−d
|V | + d×

∑ PageRank(vi)
Li

(1)

In Formula (1), d is a damping factor (usually set to 0.85); |V |
is the total number of vertices; vi represents the neighbor of v
such that v has an incoming edge from vi; Li is the number of
outgoing edges of vi. More details of the PageRank algorithm
can be found in [5].

B. Edge-centric Graph Processing

Edge-centric model for graph algorithms maintain vertex
states (eg. PageRank value) and harness a scatter-gather model
to traverse the edges [4]. The computation proceeds as a
number of iterations, each iteration consisting of a scatter
phase and a gather phase. In the scatter phase, all the edges
are traversed to produce updates. In the gather phase, all the
updates produced by the previous scatter phase are iterated
over and performed on the corresponding vertices. Algorithm
1 shows a general template for the edge-centric model. For
the PageRank algorithm, the value of the update is equal
to the PageRank value of the vertex divided by the number
of outgoing edges of the vertex; in Line 11, the update is
performed based on Formula (1).

Algorithm 1 Edge-centric Scatter-Gather Processing
Let e denote an edge
Let u denote an update

1: while not done do
2: Scatter:
3: for each edge e do
4: Read vertex e.src
5: Produce u with u.dest = e.dest
6: end for
7: Gather:
8: for each update u do
9: Read vertex u.dest

10: if update condition is true then
11: Update vertex u.dest based on u
12: end if
13: end for
14: end while

We adopt the edge-centric model for our PageRank imple-
mentation. The complexity of each iteration is O(|V | + |E|)

for both edge-centric model and vertex-centric model, where
|V | is the total number of vertices and |E| is the total
number of edges; but edge-centric model sequentially accesses
edges while vertex-centric model randomly accesses edges.
Thus, edge-centric model sustains higher external memory
bandwidth.

C. Related Work

In [14], PageRank is solved as an eigenvector problem.
The implementation is based on Virtex-5 FPGA. With 3
sparse-matrix-by-vector-multiplication (SMVM) units in the
architecture, the FPGA design outperforms the implementation
on a general purpose processor (GPP) platform.

To the best of our knowledge, our work is the first to
leverage the edge-centric model to implement the PageRank
algorithm on FPGA.

III. DRAM ACCESS MODEL

Due to the limited on-chip memory resources of FPGA, it
is common for FPGA designs to access data from off-chip
external memory such as DRAM [6], [9]. A DRAM chip
is organized into banks [11]. Each bank consists of a two-
dimensional matrix of locations. At each addressable location
([Bank, Row, Column]), a fixed number of data bits are
located. Each bank has its own sense amplifier array and can
be operated independently. This allows accesses to different
banks to be pipelined. To access a row, the row needs to be
activated first; meanwhile, the previous activated row needs to
be closed by a row precharge command.

DRAM is built on a highly pipelined architecture. There-
fore, there is a certain amount of latency between the execution
of accesses [11]. The latency depends on several timing
parameters of the DRAM device [12], such as row to column
command delay and row precharge delay. The latency also
depends on the memory access pattern. Sequential memory
access pattern can achieve much smaller latency than random
memory access pattern [12].

In our design, the DRAM access pattern includes sequential
memory access pattern and random memory access pattern.
For the sequential memory access pattern, consecutive memory
accesses access the same row of the same bank. For the
random memory access pattern, consecutive memory accesses
may access different rows of the same bank or different banks.
We define (1) the access which reads or writes an activated
row as row hit and (2) the access which reads or writes a
closed row as row miss. We abstract the DRAM access model
based on three access scenarios:
• Row hit
• Row miss, the same bank: consecutive memory accesses

access the same bank and result in row miss
• Row miss, different banks: consecutive memory accesses

access different banks and result in row miss
We define the latency between the execution of memory ac-

cesses (denoted as tinterval) as a parameter for each scenario.
The tinterval can be computed based on the timing parameters
of the DRAM [11], [12]. Based on tinterval and the clock rate



of the FPGA, the number of pipeline stalls that FPGA suffers
for each DRAM access is d tinterval

tFPGA clk
− 1e.

IV. ALGORITHM AND OPTIMIZATION

Edge-centric model accesses edges sequentially but ran-
domly accesses the data of vertices. Therefore, it is desirable
to store the data of all the vertices in the on-chip BRAM.
However, for large graphs, the on-chip BRAM resources of
FPGA are not sufficient to store the data of all the vertices.
To address this issue, we adopt the approach in [4] to partition
the graph data. In this section, we discuss the algorithm and
our optimization for data layout.

A. Pre-processing and Data Layout

After the graph data is partitioned, each partition has a
vertex set whose data can be fit in on-chip memory. Each
partition also maintains an edge set and an update set. The
edge set stores all the edges whose source vertices are in the
vertex set. The update set is used to store all the updates whose
destination vertices are in the vertex set of the partition. The
vertex set and edge set of each partition remain fixed during
the entire computation, while the update set is recomputed
in every scatter phase. Hence, the update sets of different
partitions are stored in distinct memory locations.

We propose an optimized data layout which sorts the edge
set of each partition based on the destination vertices. In
the following sections, we will show that our optimized data
layout reduces the number of random memory accesses from
O(|E|) to O(k2), where k is the number of partitions.

B. Scatter Phase and Gather Phase

Both the scatter phase and the gather phase are processed
partition by partition. We show the PageRank algorithm based
on the partitions in Algorithm 2.

C. DRAM Access Pattern

In the scatter phase of Algorithm 2, Line 4, 5 and 10 perform
DRAM accesses. Line 4 and 5 perform sequential memory
accesses since the data of vertex set and edge set are stored
contiguously in DRAM. However, Line 10 performs random
memory accesses to write updates into DRAM. This is due
to that the updates may belong to the update sets of different
partitions and need to be written into different memory loca-
tions of DRAM. In the worst case, there are O(|E|) random
memory accesses which result in O(|E|) row misses in the
scatter phase. With our data layout optimization, the updates
belonging to the same partition are produced consecutively and
can be sequentially written into the DRAM. This is because
the edge set has been sorted based on the destination vertices.
There are at most k random memory accesses1 due to writing
the updates produced by each partition. Since there are k
partitions, the number of random memory accesses to the
DRAM is O(k2) in the scatter phase .

In the gather phase of Algorithm 2, Line 15, 16 and 20
perform sequential DRAM accesses. There is one random

1One random memory access occurs when the value of bu.dest
k

c varies.

Algorithm 2 PageRank
1: while not done do
2: Scatter:
3: for each partition do
4: Store vertex set into on-chip BRAM
5: for each edge e in edge set do
6: Read vertex e.src from BRAM
7: Let v = vertex e.src
8: Produce u with u.value = v.PageRank

v.number of edges
9: u.dest = e.dest

10: Write u into update set of Partition bu.destk c
11: end for
12: end for
13: Gather:
14: for each partition do
15: Store vertex set into on-chip BRAM
16: for each update u in update set do
17: Read vertex u.dest from BRAM
18: Update vertex u.dest based on u and Formula (1)
19: end for
20: Write vertex set back into DRAM
21: end for
22: end while

memory access when the computation switches between par-
titions. Since there are k partitions, the number of random
memory accesses to the DRAM is O(k) in the gather phase.

Overall, the total number of random memory accesses to the
DRAM is O(k2) + O(k) = O(k2) for each iteration. Since
each random memory access results in at most one row miss,
the number of row misses is O(k2) for each iteration, which
is far less than O(|E|) when k is small.

V. ARCHITECTURE

A. Architecture Overview

We show the top-level architecture of our design in Fig.
1. The DRAM connects to the FPGA through the memory
interface. On the FPGA, the control unit is responsible for
computing DRAM access addresses and keeping track of the
processing progress. The processing pipeline processes the
input data read from the DRAM. The on-chip memory is used
to store the data of the vertex set of the partition which is
being processed.

B. Control Unit

We detail the control unit in Fig. 2. Based on the progress
of the current iteration, the FPGA may read the data of
vertices, edges or updates from the DRAM, and write the
data of updates or vertices into the DRAM. The control unit
is responsible for generating the DRAM access addresses
accordingly. To realize this, the control unit uses registers to
record the base addresses of the vertex set, edge set and update
set of each partition. It also keeps track of the number of
updates that have been written into the update set of each
partition. The data read from the DRAM are fed into the
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Fig. 1: Top-level Architecture

processing pipeline and processed based on the control signal.
The control unit is also responsible for checking whether the
termination condition is met (eg. a certain number of iterations
have been completed).
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Fig. 2: Control unit

C. Processing Pipeline

Based on the input control signal, the processing pipeline
perform the corresponding operation on the input data. If the
input data represent edges, the processing pipeline produces
updates accordingly; if the input data represent updates, the
processing pipeline updates the data of the corresponding
vertex.

In the gather phase, the processing pipeline needs to read
and write the data of vertices from the on-chip memory. Since
there is delay between the reading and writing of the on-chip
memory, read-after-write hazard may occur. We use the data
forwarding approach in [10] to handle the potential read-after-
write hazard.

To increase parallelism, the processing pipeline can process
multiple edges or updates concurrently. We define the data
parallelism of the architecture (denoted as p) as the number
of input data that can be processed concurrently. We adopt
the approach in [15] to build a pRpW (p read ports and p
write ports) on-chip memory using BRAMs. Thus, the data of
p vertices can be read or written by the processing pipeline
concurrently. In the gather phase, it is likely that multiple
updates which have the same destination vertex are fed into
the processing pipeline in the same clock cycle. This results in
write conflict when the processing pipeline needs to perform
multiple writes for the same vertex concurrently. To address
such data dependency, we add a combining network in front of
the processing pipeline. In the gather phase, p updates enter
the combining network in each clock cycle. The combining
network sorts the p updates based on their destination vertices
using bitonic sorting approach [16]. During sorting, if two
updates have the same destination vertex, the updates are
combined. The architecture of the processing pipeline for
p = 4 is depicted in Fig. 3.
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Fig. 3: Architecture of processing pipeline

VI. PERFORMANCE EVALUATION

A. Experimental Setup

The experiments were conducted on the Xilinx Virtex-7
xc7vx1140tflg1930 with -2L speed grade. The target platform
has 712,000 slice LUTs, 1,424,000 slice registers, 850 I/O pins
and upto 67 Mb of BRAM.

In the experiments, each edge consists of a 32-bit source
vertex index and a 32-bit destination vertex index; each
vertex maintains the PageRank value using 32 bits and the
number of outgoing edges of the vertex using 32 bits; each
update contains a 32-bit value and a 32-bit destination vertex
index. We use the Micron 8Gb DDR3-1600 MT41K1G8 [17]
in our design. We evaluate our design using the following
performance metrics:

• Clock rate: the clock rate sustained by the FPGA design
• Resource utilization: the utilization of FPGA resources
• Execution time: the execution time per iteration



We use Xilinx Vivado 2015.2 development tool to measure
the clock rate and resource utilization of our FPGA design.
The reported clock rate and resource utilization are based on
post-place-and-route results.

B. Clock Rate and Resource Utilization

1) p=1: We first study the performance when the data
parallelism is 1. We vary the partition size (number of vertices
per partition) from 64K to 512K. Fig. 4 shows the clock
rate and resource utilization of the PageRank designs. All
the designs achieve a high clock rate of over 230 MHz for
various partition sizes. The main bottleneck to support a larger
partition is due to the BRAM resources. When the partition
size reaches 512K, the BRAM resources are consumed by
55%.
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Fig. 4: Performance for p = 1

2) Increasing p: We further increase the data parallelism.
Fig. 5 and Fig. 6 show the performance for p = 2 and p = 4,
respectively. All the designs achieve a high clock rate of over
200 MHz. We observe that the clock rate slowly deteriorates
as the partition size increases. This is due to a more complex
routing for a larger partition size. As we increase the data
parallelism with the same partition size, more resources are
consumed for implementing the multi-port on-chip memory
and its LVT table [15].

The main bottleneck to support a larger partition size
comes from the slice LUT resources. For p = 2, the slice
LUT resources are consumed by 53% when the partition size
reaches 64K. For p = 4, the slice LUT resources are consumed
by 96% when the partition size reaches 16K.

C. Execution Time and Memory Performance

We use real-world web graphs to study the system per-
formance with respect to execution time. The datasets are
obtained from [18]. Table I summaries the datasets used in
the experiments.
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Fig. 5: Performance for p = 2
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Fig. 6: Performance for p = 4

TABLE I: Datasets
Name No. of vertices No. of edges

web-NotreDame 325,729 1,497,134
web-Google 875,713 5,105,039

web-Berkstan 685,230 7,600,595
wiki-Talk 2,394,385 5,021,410

In the experiments, we use the FPGA design with data
parallelism of 4 and partition size of 16K. The FPGA design
runs at 200 MHz. To evaluate the overall system performance,
we build our own simulator. We did not use the publicly
available DRAM simulators such as DRAMSim2 [19] due
to (1) these DRAM simulators need to integrate an FPGA
simulator as well to simulate the full system and (2) these
DRAM simulators are designed for complex multi-thread
applications while the memory access pattern involved in our
problem is much simpler.

Given a graph, our simulator first generates a sequence of
memory accesses based on Algorithm 2. Then the memory
accesses are reordered and executed based on the First Ready-
First Come First Serve (FR-FCFS) scheduling policy [13],



which is widely used in memory controllers to optimize
memory performance for single-thread applications. Based
on our DRAM access model introduced in Section III, we
compute the number of pipeline stalls that FPGA needs to
suffer for each DRAM access. Finally, the total execution time
is obtained as the number of clock cycles that FPGA executes,
including the pipeline stall overheads.

We compare the performance of our optimized design
against a baseline design and the theoretically best perfor-
mance of the target platform. The baseline design uses the
data layout in [4] which does not include our data layout
optimization. To compute the theoretically best performance,
we assume that every DRAM access results in row hit and the
pipeline on FPGA does not suffer any stalls due to DRAM
accesses. In Fig. 7, we show the performance comparison with
respect to the execution time. In Table II, we show the number
of pipeline stalls due to the DRAM accesses for the optimized
design and baseline design, respectively.
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Fig. 7: Performance comparison of execution time

TABLE II: Performance comparison

Dataset
No. of pipeline stalls

Optimized Baseline

web-NotreDame 30,973 682,014
web-Google 120,674 8,238,665

web-Berkstan 154,473 2,218,232
wiki-Talk 172,041 3,242,586

It can be observed that our optimized design dramatically
reduces the number of pipeline stalls. As shown in Fig. 7, the
performance of our optimized design is close to the theoreti-
cally best performance. In all the experiments, our design can
achieve at least 96% of the theoretically best performance.
Compared with the baseline design, the execution time per
iteration is improved by up to 70%.

VII. CONCLUSION

In this paper, we presented an FPGA implementation of
the classic PageRank algorithm. We optimized the data layout
to minimize the number of random memory accesses to the
DRAM. We conducted comprehensive experiments on a state-
of-the-art FPGA. Post-place-and-route results show that our

design achieves a high clock rate of over 200 MHz. Based
on a realistic DRAM access model, we built a simulator
to evaluate the system performance. The simulation results
show that our optimized design achieves at least 96% of
the theoretically best performance of the target platform.
Compared with the baseline design which does not include our
optimization techniques, our optimized design dramatically
reduces the number of pipeline stalls due to DRAM accesses
and improves the execution time by over 70%.
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