
FP-CPNNQ: A Filter-Based Protocol for
Continuous Probabilistic Nearest Neighbor

Query

Yinuo Zhang1, Anand Panangadan2, Viktor K. Prasanna2

1 Department of Computer Science, University of Southern California
2 Ming Hsieh Department of Electrical Engineering, University of Southern California

{yinuozha,anandvp,prasanna}@usc.edu

Abstract. An increasing number of applications in environmental mon-
itoring and location-based services make use of large-scale distributed
sensing provided by wireless sensor networks. In such applications, a
large number of sensor devices are deployed to collect useful information
such as temperature readings and vehicle positions. However, these dis-
tributed sensors usually have limited computational and communication
power and thus the amount of sensor queries should be reduced to con-
serve system resources. At the same time, data captured by such sensors
is inherently imprecise due to sensor limitations. We propose an effi-
cient probabilistic filter-based protocol for answering continuous nearest
neighbor queries over uncertain sensor data. Experimental evaluation on
real-world temperature sensing data and synthetic location data showed
a significant reduction in the number of update messages.

1 Introduction

A range query is a test of whether a variable has its value within a specified range.
When the variable is to be monitored so that a result is returned whenever its
value enters the specified range, the range query is typically registered at a
server and the process is called a continuous range query. Continuous queries,
in particular continuous range queries, has attracted significant research interest
with the development of wireless sensor networks and moving object databases.
For example, a query to an environment monitoring sensor network could be to
continuously return the identity of all temperature sensors with their readings
above a certain threshold (if the temperature reading is above this limit, it
could indicate a fire at the sensor location). A range query is a special case of
a non-aggregate query as the answer only depends on the value of the object
being queried (for instance, a sensor measurement or location). On the other
hand, an aggregate query is one where accessing a single object does not provide
enough information to answer the query. For example, whether vehicle v is in
a specific region only depends on its own position (non-aggregate query), while
whether v is the nearest vehicle to building b also depends on other vehicles
(aggregate query). Such continuous nearest neighbor queries are important in

location-based services. For example, a query that can continuously report the
nearest ambulance to an accident site can enable rapid response to accidents.

An additional complication in practical sensor network deployments is the
inherent uncertainty in the measurement process due to reasons such as sensor in-
accuracy, discrete sampling intervals, and network latency. In previous work [31],
we adopted the attribute uncertainty model to formalize the querying of uncer-
tain data sources. The attribute uncertainty model assumes that the true value
of the object being queried is within a closed region with a non-zero probability
density function (PDF) for the value of interest. This region of uncertainty is an
interval for the one-dimensional case, while it is a closed 2D region (e.g., circle or
rectangle) for the two-dimensional case. The PDF can take on any distribution
such as uniform distribution or Gaussian distribution. Figure 1 illustrates an
example of attribute uncertainty for one-dimensional and two-dimensional data.

(a)

pdf

(Gaussian)

uncertainty
region

location
Reported by
sensor

(b)

25oC

pdf (uniform)

temp.

uncertainty
region

27oC

temp.
reported by

sensor

26oC

Fig. 1. Uncertainty of (a) temperature and (b) location

Queries can be issued over such uncertain data sources. Incorporating at-
tribute uncertainty in continuous query processing results in continuous prob-
abilistic queries (CPQ). In this context, “probabilistic” refers to a threshold
condition defined as a probability bound that is provided with the query. For
example, instead of a query requesting the identity of all temperature sensors
having their readings within a specific range, a probabilistic query requests the
identity of all sensors that are likely to have readings within that range with a
probability higher than some pre-defined threshold.

As previously described, continuous queries over uncertain data can be object-
independent as in the case of continuous probabilistic range queries (CPRQ) or
be of an aggregate type, as in continuous probabilistic nearest neighbor queries
(CPNNQ).

In [31], we comprehensively investigated object-independent queries with em-
phasis on range queries. We proposed a probabilistic filter protocol that reduces
both communication and computational cost during query execution. Efficient
concurrent query execution is also enabled with a multiple query protocol. In

this paper, we extend the filter-based approach to the case of object-dependent
queries over uncertain data. Such aggregate queries are more difficult to answer
compared to object-independent queries since it requires accessing more infor-
mation. We evaluate our approach for the special case of CPNNQ. Our main
contributions in this paper are:

– Formalization of continuous probabilistic nearest-neighbor query (CPNNQ)
– A filter-based protocol to efficiently answer CPNNQs
– Evaluation of the proposed approach with comprehensive experiments on

real sensor datasets

The rest of this paper is organized as follows. Section 2 presents related
work. Section 3 describes the proposed data system and query model. A novel
probabilistic filter protocol for CPNNQ is proposed in Section 4. In Section 5,
we describe our experimental setup for evaluation and discuss the results. We
conclude this paper in Section 6.

2 Related Work

In this section, we first summarize current research in efficient continuous query
processing followed by progress in probabilistic query execution.

2.1 Continuous Query Processing

Efficient continuous query execution has been widely studied in the database
community. Most of this work focuses on reducing the update frequency and
computation load during query execution. In wireless sensor networks (WSNs),
in-network processing is a common strategy to provide energy-efficient query ex-
ecution in terms of communication cost [13,1]. Research has resulted in efficient
protocols for a single type of query execution including aggregate query [18],
top-k query [29] and spatio-temporal query [8]). In [15], a general framework
was proposed to find the maximum lifetime for continuous innetwork evaluation
of expression trees and can efficiently execute continuous queries in WSNs. How-
ever, in-network processing demands a large query processing capability at all
sensors. In order to alleviate this requirement, [24] proposed a technique which
does not require that a sensor be able to resolve a query and also supports multi-
ple types of queries. In order to reduce transmission power, [2] also presented an
optimized query routing tree which can provide a path to transmit query results
to the querying node.

Most of the above works focus on the resolution of a single query. Prab-
hakar et al. introduced an efficient indexing framework to handle query arrival
and removal for multiple query execution [23]. Xiong et al. [30] proposed an in-
cremental algorithm for reducing query re-evaluation cost by sharing execution
effort among concurrently-executing queries. Muller et al. proposed a network
query approach which combines multiple requests [20]. The results for a specific

user are then extracted from the results for the corresponding network query. Li
et al. developed an algorithm for evaluating multiple queries, which exploit the
sharing of data movement among different queries [16]. [17] provided a scalable
energy-efficient multi-query processing framework which enables sharing infor-
mation among different queries.

Another technique for reducing system load is stream filter [22,7,29,6,10], in
which some query answering tasks are deployed to remote streaming sources
(e.g., sensors and mobile devices). Each remote source is associated with filter
constraints derived from a given continuous query. These constraints are used to
decide whether an object needs to report its newest value to the server. Since the
filter prevents all values from being sent to the server, a substantial amount of
communication effort can be saved. However, data uncertainty is wide-spread in
real-world applications and this issue is not addressed in existing work. In this
paper, we investigate the problem of efficiently executing attribute-uncertain
queries. Specifically, we develop probabilistic filters for continuous probabilistic
nearest-neighbor queries which utilize the uncertainty information associated
with sensor measurement.

2.2 Uncertainty Management in Query Execution

Chen et al. [4] studies the problem of updating answers for continuous probabilis-
tic nearest neighbor queries in the server. They developed an efficient algorithm
to update the answers without re-evaluating the whole query. [28,27] investigated
the problem of efficiently executing continuous nearest neighbor (NN) queries for
uncertain moving objects trajectories. [21] addressed probabilistic nearest neigh-
bor queries in uncertain trajectories databases using a Markov chain model. Note
that these works only handle continuous queries on the server and do not use
filters to reduce communication and energy costs. Farrell et al. [11,12] proposed
the notion of spatial and temporal tolerance, and examined the use of these se-
mantics to support energy-efficient sensing of location data. The uncertainty in
location value is modeled by a uniform uncertainty region; the possibility of a
non-uniform PDF representing the uncertainty within the region is not consid-
ered. Moreover, the results of the queries studied in those works are not prob-
abilistic. In this paper, we consider attribute-uncertain data and probabilistic
queries.

In our preliminary work [32], we developed a filter protocol for single continu-
ous non-aggregate query execution. In [31], we examined how to handle multiple
queries efficiently. We also proposed slack filters to approximate filter regions
that are hard to represent. We used range query, a typical aggregate query, as a
case study in these works. In [14], we investigated efficient continuous aggregate
query execution over uncertain data. However, this work mainly focus on possi-
ble instead of probabilistic queries (this is the special case where the probability
threshold specified in the query condition is either 0 or 1). In this paper, we
explore the problem of probabilistic aggregate query execution. Specifically, we
will develop a filter-based protocol for continuous nearest neighbor queries over
uncertain data.

3 System Architecture

In this section, we present the system model for query execution and the prob-
abilistic query definition.

3.1 System Model

We adopt the system model defined in [31]. Figure 2 shows the system framework
which has following components.

– Uncertainty Database stores an error model (e.g., attribute uncertainty
model with region and distribution) for each type of sensor and the most
recent value reported by each sensor.

– Query Manager receives query requests from users and evaluates them
based on the data in the uncertainty database (e.g., [5]).

– Filter Manager derives filter constraints: the query information and data
uncertainty is sent to the sensors which use this information to decide if they
should report any updated value. This step reduces the energy and network
bandwidth consumption.

– Each sensor has a data collector which retrieves data values (e.g., tempera-
ture or position coordinates) from external environments and a set of filter
constraints, which are boolean expressions for determining whether the value
obtained from the data collector is to be sent to the server.

User

Query

Manager

Filter

Manager

Uncertain

Database

query

request

answer

update

Server Sensors

insert/delete

filter constraints

sensor

value

Filter
Data

Collector

error model

query

request

Fig. 2. System Architecture

Table 1 summarizes the symbols used throughout this paper. We describe a
one-dimensional data uncertainty model (e.g., Figure 1(a)) to illustrate our tech-
niques. However, the techniques can be directly applied to the multi-dimensional
case since we can project the distance between the sensed value of a sensor and
the query position to one dimension.

Table 1. Symbols used in the paper

Symbol Description

oi ID of the i-th sensor, where 1 ≤ i ≤ n

vi(t) Sensed value of oi at time t

P Probability threshold for q

pi(t) Qualification probability of oi at time t for q

bi = [li, ui] 1D probabilistic filter of oi for qj

3.2 Continuous Probabilistic Queries

Let o1, . . . , on be the IDs of n sensing devices monitored by the system. A Con-
tinuous Probabilistic Query (CPQ) [31] is defined as:

Definition 1. Given a time interval [t1, t2], a real value P ∈ (0, 1], a CPQ q
returns a set of IDs {oi|pi(t) ≥ P} at every time instant t, where t ∈ [t1, t2], and
pi(t) is the probability that the value of oi satisfies query q at time t.

We also call [t1, t2] the lifetime of q. In this paper, we focus on a special case
of CPQ called continuous probabilistic nearest neighbor query (CPNNQ), as
defined below:

Definition 2. Given a time interval [t1, t2], a real value P ∈ (0, 1], a CPNNQ
q returns a set of IDs {oi|pNN

i (t) ≥ P} at every time instant t, where t ∈ [t1, t2],
and pNN

i (t) is the probability that oi is the nearest neighbor of q at time t.

An example of such a query is: “During the time interval [1PM, 2PM], what
are the IDs of sensors, whose temperature values are closest to (nearest neighbor
of) 13oC with probability p > 0.2, at each point of time?” Another example in
2D case is: “During the next one hour, what are the IDs of vehicles, whose
probabilities of being the nearest neighbor of Staples Center are more than P =
0.3, at each point of time?” Notice that the answer can be changed whenever a
new value is reported.

At any time t, the qualification probability of a sensor oi for a query q can
be computed by performing the following operation:

pNN
i (t) = Pr(∀oj ∈ O, oj 6= oi, |oi(t)− q| ≤ |oj(t)− q|) (1)

where |q − o(t)| is the distance between query q and sensor o’s value at time
t. Note that o(t) represents sensor o’s most recently updated value instead of
sensed value at time t. However, we know that the value of sensor o is modeled
using attribute uncertainty. So Equation 1 can be rewritten as:

pNN
i (t) =

∫ f

ni

Pr(|oi(t)− q| = r)Pr(|oj(t)− q| > r)dr (2)

=

∫ f

ni

pdfi(r)

n∏
k=1∧k 6=i

(1− cdfk(r))dr (3)

where r is a variable denoting the distance to q, f is the distance between
the nearest far-point among all sensor values to q, ni is the distance between
the nearest point of sensor oi’s value to q, pdfi and cdfi are the probability
density function and the cumulative density function of oi’s value respectively.
For example,

cdfk(r) =

∫ r

nk

pdfk(r)dr (4)

Basic CPNNQ Execution. A naive approach for answering a CPNNQ
is to assume that each sensor’s filter has no constraints. When a sensor’s value
is updated at time t′, its new value is immediately sent to the server, and the
qualification probabilities of all sensors are re-evaluated. Then, after all pNN

i (t′)
have been computed, the IDs of devices whose qualification probabilities are not
smaller than P are returned to the user. The query answer is recomputed during
t1 and t2, whenever a new value is received by the server.

However, this approach is inefficient because:

– Every sensor has to report its sensed value to the server periodically, which
wastes a lot of energy and network bandwidth;

– Whenever an update is received, the server has to compute the qualification
probability of each sensor with Equation 1, which can be slow.

In the next section, we will present our efficient probabilistic filter-based
solution for handling continuous nearest neighbor queries.

4 The Probabilistic Filter Protocol

In this section, we present a filter-based protocol for answering continuous near-
est neighbor query.

4.1 Protocol Design

Let us discuss the protocol for server side and sensor side separately.
In the server side (Algorithm 1), once a query q is registered, it comes to

the initialization phase. The server requests the latest value (i.e., temperature
reading) from each sensor. Based on the values and uncertainty model, the server
computes a probabilistic filter for each sensor and deploy on the sensor side. How
the filter is derived will be elaborated in Section 4.2. The server initializes the
answer set using the uncertain database. In the maintenance phase, once the
server receives an update from a sensor, it requests the latest value from each
sensor. The probabilistic filters are recomputed in the server side and sent back
to each sensor. Based on the latest values in the uncertain database, the server
refreshes the answer set.

In the sensor side, it is quite similar to [31]. The only task is to check whether
the sensed value violates its filter constraint or not. In order to do this, each sen-
sor needs to continuously sense its value and compare with the filter constraint.

1 Initialization:
2 Request data from sensors o1, . . . , on;
3 for each sensor oi do
4 UpdateDB(oi);
5 Compute filter region bi;
6 Send(addFilterConstraint, bi, oi);

7 Initialize the answer set;
8 Maintenance:
9 while t1 ≤ currentTime ≤ t2 do

10 Wait for update from oi;
11 Request data from sensors o1, . . . , on;
12 for each sensor oi do
13 UpdateDB(oi);
14 Compute filter region bi;
15 Send(addFilterConstraint, bi, oi);

16 Update the answer set;

17 for each sensor oi do
18 Send(deleteFilterConstraint, oi);

Algorithm 1: Probabilistic filter protocol for CPNN query(server side).

The filter constraint is in the form of an interval in one dimensional case and an
annulus in two dimensional case. If the sensed value is within that interval or
annulus, the sensor does not need to send an update to the server. Otherwise,
update is sent. Intuitively, this protocol can reduce the number of communica-
tion messages sent from sensors to server, but still provides a correct query result
set.

4.2 Filter Derivation

In this section, we will present how the probabilistic filter is derived. We use one
dimensional filter constraint as a case study.

For the filter constraint of oi, it consists of two boundaries bi = [li, ui]. For
convenience, li denotes the boundary near to the query point, while ui denotes
the boundary far from the query point.

Preprocessing Phase. Once the server receives the latest values and uncer-
tainty model from all sensors, it computes the qualification probability pNN

i (t0)
(pi for short in the following discussions) for each sensor oi. Based on the qualifi-
cation probabilities, the server classifies the sensors into three sets S, L (answer
set) and Z.

S ← {oi|0 < pi < P} (5)

L← {oi|pi ≥ P} (6)

Z ← {oi|pi = 0} (7)

We now describe how to derive bi for the sensors in each set.
Deriving ui for S. Algorithm 2 illustrates the derivation of far boundary

for sensors in set S.

1 pdiff = minoi∈S(P − pi);
2 for each sensor oi ∈ S do
3 si = max(pi −

pdiff

|S|−1
, 0);

4 ui = zi(si);

Algorithm 2: Deriving ui for S.

In Algorithm 2, zi(x) is a function defined as: given that all other sensor
values do not change, the qualification probability of oi will be exactly p, when
the distance from oi’s sensed value to the query point is zi(p), where 0≤ p ≤
1. Notice that sometimes zi(p) may not exist when p is large (i.e. if another
sensor value’s uncertainty region overlaps with q, oi cannot have its qualification
probability to be 1).

The intuition behind Algorithm 2 is as follows: if oi’s sensed value moves
far away from query q, pi becomes smaller. This may increase the qualification
probability of other sensors in S or L since the sum of p is equal to 1. The filter
boundary ui ensures that the qualification probability of any sensor in S will
not increase to a value above P . It means that no sensor in S changes its status
from non-answer to answer if the filter constraint is not violated.

Deriving li for L. Algorithm 3 illustrates the derivation of near boundary
for sensors in set L.

1 pdiff = minoi∈L(pi − P);
2 for each sensor oi ∈ L do
3 si =

pdiff

|L|−1
;

4 p′i = {pi|ci = 0};
5 yi = min(pi + si, p

′
i);

6 li = zi(yi);

Algorithm 3: Deriving li for L.

Similar to Algorithm 2, the filter boundary derived from Algorithm 3 guar-
antees that if oi’s value moves close to query q, all other sensors in L have no
chance to switch their status from answer to non-answer. In other words, the
filter constraint limits the increase on pi so that others’ qualification probability
cannot decrease to a value below P .

Deriving li for S. The next two cases (li for S and ui for L) are more
complicated than the previous two. Let us imagine, if the value of a sensor
oi ∈ S moves towards query q, it may affect the status of the sensors in L since
the increase in pi causes the decrease in the qualification probability for sensors
in L. It is possible that some L sensors have their qualification probability less
than P . But this never happens in the first two cases.

For convenience, we first sort all sensors. We have sensors in L as o1,...oh in
descending order of p, and sensors in S as oh+1,...,om in descending order of p.
ci denotes the distance from the latest sensed value vi to q. In order to derive li
for S, we define two functions Zi(w,C[1...m]) and CalQPh(C[1...m]) as follows,

Given a sensor oi, the distance from its sensed value to the query point is
Zi(w,C[1...m]) where w = pi ∈ [0, 1] and C[k] = |vk − q|.

Given a sensor oh, its qualification probability is CalQPh(C[1...m]) where
C[k] = |vk − q|.

Let us design the algorithm by considering the worst case. Suppose we allow
pi increase by at most δi. To ensure the correctness, δi must satisfy following
conditions,

p′h −
m∑

i=h+1

δi ≥ P (8)

where p′h = CalQPh(C[1...m]) and C[k] = li, k = 1...h− 1 and C[k] = ck, k =
h...m.

pi +

m∑
k=h+1,k 6=i

(p′k − pk) + δi < P (9)

where p′k = CalQPk(C[1...m]) and C[t] = ct, t = 1...h, i and C[t] = ut, t =
h+ 1...m, t 6= i.

Equation 8 guarantees that if all sensor values move to their inner filter
boundary except oh, then oh’s ph is still larger than or equal to P . Equation 9
guarantees that if all S sensors values move to their outer filter boundary except
oi and oi moves to its inner boundary, then oi’s pi is still less than P .

As a result, the increase for pi should satisfy

δi ≤
p′h − P
|S|

(10)

δi < P − Pi −
m∑

k=h+1,k 6=i

(p′k − pk) (11)

If P − Pi −
m∑

k=h+1,k 6=i

(p′k − pk) ≥ p′
h−P
|S| , the maximum allowed qualification

probability pmax
i = pi + δi, where δi =

p′
h−P
|S| , and li = Zi(p

max
i , C[1...m]), where

C[k] = lk and k = 1...h− 1 and C[k] = ck, k = h...m.

If P − Pi −
m∑

k=h+1,k 6=i

(p′k − pk) <
p′
h−P
|S| , the maximum allowed qualification

probability pmax
i = pi + δi, where δi = P − Pi −

m∑
k=h+1,k 6=i

(p′k − pk), and li =

Zi(p
max
i , C[1...m]), where C[k] = ck and k = 1...h, i and C[k] = uk, k = h +

1...m, k 6= i.

According to Equation 10 and 11, the qualification probability of oi can reach
pmax
i = pi + δi, but no larger than pmax

i . Then the filter boundary can be safely
set as li = Zi(p

max
i , C[1...m]). The derivation is formalized in Algorithm 4.

1 Compute p′h = CalQPh(C[1...m]) and C[k] = li, k = 1...h− 1 and C[k] = ck, k
= h...m;

2 Compute p′k = CalQPk(C[1...m]) and C[t] = ct, t = 1...h, i and C[t] = ut, t =
h + 1...m, t 6= i;

3 for each sensor oi ∈ S do

4 pmax
i = pi + min(

p′
h
−P

|S| , P − Pi −
m∑

k=h+1,k 6=i

(p′k − pk));

5 li = Zi(p
max
i , C[1...m]);

Algorithm 4: Deriving li for S.

Deriving ui for L. We omit the detailed derivation here since it is similar
to the previous case (li for S). Algorithm 5 illustrates the derivation steps.

1 Compute p′h+1 = CalQPh+1(C[1...m]) and C[k] = ck, k = 1...h and C[k] = lk, k
= h + 2...m and C[k] = lk, k = h + 1;

2 Compute p′k = CalQPk(C[1...m]) and C[t] = ut, t = 1...h, t 6= i and C[t] = lt, t
= h + 1...m;

3 for each sensor oi ∈ L do

4 pmin
i = pi - min(

p′
h+1
−P

|L| , P − Pi −
m∑

k=1,k 6=i

(p′k − pk));

5 ui = Zi(p
min
i , C[1...m]);

Algorithm 5: Deriving ui for L.

Deriving Filter for Z. So far, we have derived the filters for sensors in S
and L. Now we investigate Z set, which is the largest set among all three in
most cases. However, the filter derivation for this set is much simpler than the
previous two. We first define a cut off value cutoff = f+n

2 where f is the farthest
uncertainty boundary of non-zero qualification probability sensors (minimum

maximum distance) and n is the nearest uncertainty boundary of zero qualifi-
cation probability sensors (maximum minimum distance). The filter boundary
for oi ∈ Z can be set as [li, ui] = [cutoff+ ri

2 ,+∞] where ri is the length of oi’s
uncertain region.

The one dimensional filter constraint can be easily extended to support two
dimensional data. The filter constraint region is an annulus centered at the query
point with two radii as li and ui.

Intuitively, with the deployment of the probabilistic filters, the updates be-
tween sensors and server can be saved compared with basic CPNNQ execution
protocol.

5 Experiments

In this section, we describe the results of evaluating our protocol using a set of
real temperature sensor data (Section 5.1) and a location database (Section 5.2).

0

10

20

30

40

50

60

0.05 0.1 0.15 0.2 0.25

U
p

d
a

te
 F

re
q

u
e

n
cy

Probability Threshold P

No Filter

FP-CPNNQ

Fig. 3. Update Frequency on Temperature Data

5.1 Temperature Data

Experiment Setting. The same set of data in [31] is used for experimental
evaluation. Specifically, we have 155,520 one-dimensional temperature readings
captured by 54 sensors on 1st March 2004, provided by the Intel Berkeley Re-
search lab. The temperature values are collected every 30 seconds. The lowest
and the highest temperature values are 13oC and 35oC respectively. The domain
space is [10oC, 40oC]. The uncertainty region of a sensor value is in the range
of ± 1oC [19]. By default, the uncertainty PDF is a normal distribution, with

the mean as the sensed value, and the variance as 1. Also, the energy for send-
ing an uplink message is 77.4mJ, while that for receiving a downlink message
is 25.2mJ [9]. Each data point is obtained by averaging over the results of 100
random queries. Each query point is generated randomly within the domain.
A query has a lifetime uniformly distributed between [0, 24] hours. A query’s
probability threshold value, P , varies from 0.05 to 0.25. We compare our pro-
tocol with the basic protocol in which no filter is deployed. The reason we only
consider no filter case is that no other work focuses on communication cost for
continuous probabilistic nearest neighbor query.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0.05 0.1 0.15 0.2 0.25

E
n

e
rg

y
 C

o
n

su
m

p
ti

o
n

 p
e

r
S

a
m

p
li

n
g

 I
n

te
rv

a
l

(m
J)

Probability Threshold P

No Filter

FP-CPNNQ

Fig. 4. Energy Consumption on Temperature Data

Experiment Results. We evaluate the probabilistic filter protocol for an-
swering nearest neighbor query in terms of update frequency and energy con-
sumption. As shown in Figure 3, the probabilistic filters reduce update frequency
by 31% on average. When the probability threshold is 0.25, the reduction on up-
date frequency is 36%. Similar results can be observed while evaluating energy
consumption (Figure 4). The probabilistic filters reduce energy consumption on
sensors by 1295 mJ per sampling interval (30 seconds) on average. The reason
we have reduction in both the update frequency and energy consumption is that
in some sampling periods, all sensor values stay within their corresponding filter
region. As a result, no update is generated. We also observe that as the proba-
bility threshold increases, the probabilistic filters decrease the number of update
messages and thus reduce energy. This is because the answer set for the queries
with larger probability thresholds often has fewer qualified objects. Therefore,
these answer sets are updated less frequently than that of queries with a smaller
probability threshold. For example, when the probability threshold is 1.0, the
answer set has at most one object.

5.2 Location Data

Experiment Setting. In this experiment, we also use the same set of location
data in [31]. We simulate the movement of vehicles in a 2.0 x 2.0 km2 European
city. We use the CanuMobiSim simulator [26] to generate 5000 vehicles, which
follow a smooth motion model in the streets of the city [3]. The following error
model is applied to a position obtained with a (simulated) GPS device: the
sensing uncertainty is obtained from a statistical error model with imprecision
of 6.3m, with 95% probability [25]. The vehicles have a maximal velocity of
vmax = 30m/s. The maximal sensing uncertainty is 10m and the sampling time
interval is 1s. Thus, the radius of the uncertainty region of the vehicle is 40m.
We simulate the movement of 5,000 objects over 90s, or 450,000 records. Each
query point is generated randomly within the map. Each query has a lifetime
uniformly distributed between [0, 90] seconds. Next, we present the results for
expriments using this location dataset.

3000

3500

4000

4500

5000

5500

0.05 0.1 0.15 0.2 0.25

U
p

d
a

te
 F

re
q

u
e

n
cy

Probability Threshold P

No Filter

FP-CPNNQ

Fig. 5. Update Frequency on Location Data

Experiment Result. We also use update frequency and energy consump-
tion as the metrics to evaluate the probabilistic filter protocol for answering
nearest neighbor query over location data. As shown in Figure 5, the probabilis-
tic filters reduce update frequency by 8% on average. For energy consumption
(Figure 6), it is reduced by 30.4 J per sampling interval (1s) on average. When
the probability threshold is 0.25, the reduction in both update frequency and
energy consumption approaches 11%. Similar to the results on temperature data,
in some sampling periods, no moving object crosses the boundary of their filter
region. Update messages are not sent in these cases. However, the improvement
is not as much as that for temperature data. The reason is that temperature
readings, compared with vehicle locations, are relatively steady so that the filter
constraints are not typically violated.

However, the performance of probabilistic filter for CPRQ [31] is much better
than that for CPNNQ. This is because of the differences in their filter protocols.
For CPRQ, only the sensor whose filter constraint is violated needs to send an
update to the server. For CPNNQ, once a filter constraint is violated, all sensors
need to send a message to the server. In the future, we will consider locality in
value in order to send updates to only a subset of sensors.

250

270

290

310

330

350

370

390

410

0.05 0.1 0.15 0.2 0.25

E
n

e
rg

y
 C

o
n

su
m

p
ti

o
n

 p
e

r
S

a
m

p
li

n
g

 I
n

te
rv

a
l

(J
)

Probability Threshold P

No Filter

FP-CPNNQ

Fig. 6. Energy Consumption on Location Data

6 Conclusions

We investigated continuous nearest neighbor query execution over uncertain
data. The proposed probabilistic filter protocol for processing such queries re-
duced communication cost and energy consumption of wireless sensors. Experi-
mental evaluation on real-world temperature sensing data showed a reduction in
the number of update messages by upto 36%. Evaluation on querying of synthetic
2D location dataset showed a reduction in both update frequency and energy
consumption of 11%. The reduction in updates for continuous nearest neighbor
queries is also significantly greater than that of continuous range queries.

One future direction is to extend our protocol to efficiently support multiple
aggregate query execution. Another direction is to introduce tolerance in query
answers in order to further reduce communication cost at sensor side.

Acknowledgment

We would like to thank Prof. Reynold Cheng (University of Hong Kong) for
providing support in the early stage of this research.

References

1. Maaz Bin Ahmad, Muhammad Asif, M Hasan Islam, and Dr Sadia Aziz. A short
survey on distributed in-network query processing in wireless sensor networks. In
Networked Digital Technologies, 2009. NDT ’09. First International Conference
on, pages 541 –543, july 2009.

2. Panayiotis Andreou, Demetrios Zeinalipour-Yazti, Andreas Pamboris, Panos K.
Chrysanthis, and George Samaras. Optimized query routing trees for wireless
sensor networks. Inf. Syst., 36(2):267–291, April 2011.

3. Christian Bettstetter. Mobility modeling in wireless networks: categorization,
smooth movement, and border effects. Mobile Computing and Communications
Review, 5(3):55–66, 2001.

4. Jinchuan Chen, Reynold Cheng, Mohamed F. Mokbel, and Chi-Yin Chow. Scal-
able processing of snapshot and continuous nearest-neighbor queries over one-
dimensional uncertain data. volume 18, pages 1219–1240, 2009.

5. Reynold Cheng, Dmitri V. Kalashnikov, and Sunil Prabhakar. Evaluating proba-
bilistic queries over imprecise data. In SIGMOD, 2003.

6. Reynold Cheng, Ben Kao, Alan Kwan, Sunil Prabhakar, and Y. Tu. Filtering data
streams for entity-based continuous queries. In IEEE TKDE, volume 22, pages
234–248, 2010.

7. Reynold Cheng, Ben Kao, Sunil Prabhakar, Alan Kwan, and Yi-Cheng Tu. Adap-
tive stream filters for entity-based queries with non-value tolerance. In VLDB,
2005.

8. Alexandru Coman, Mario A. Nascimento, and Jörg Sander. A framework for spatio-
temporal query processing over wireless sensor networks. In Proceedings of the 1st
Workshop on Data Management for Sensor Networks, in conjunction with VLDB,
DMSN 2004, Toronto, Canada, August 30, 2004, pages 104–110, 2004.

9. Crossbow Inc. MPR-Mote Processor Radio Board User’s Manual.

10. Hazem Elmeleegy, Ahmed K. Elmagarmid, Emmanuel Cecchet, Walid G. Aref, and
Willy Zwaenepoel. Online piece-wise linear approximation of numerical streams
with precision guarantees. PVLDB, 2(1):145–156, 2009.

11. Tobias Farrell, Reynold Cheng, and Kurt Rothermel. Energy-efficient monitoring
of mobile objects with uncertainty-aware tolerances. In IDEAS, 2007.

12. Tobias Farrell, Kurt Rothermel, and Reynold Cheng. Processing continuous range
queries with spatio-temporal tolerance. In IEEE TMC, volume 10, pages 320–334,
2010.

13. Johannes Gehrke and Samuel Madden. Query processing in sensor networks. IEEE
Pervasive Computing, 3(1):46–55, 2004.

14. Yifan Jin, Reynold Cheng, Ben Kao, Kam yiu Lam, and Yinuo Zhang. A filter-
based protocol for continuous queries over imprecise location data. In CIKM, pages
365–374, 2012.

15. Konstantinos Kalpakis and Shilang Tang. Maximum lifetime continuous query
processing in wireless sensor networks. Ad Hoc Netw., 8(7):723–741, September
2010.

16. Jian Li, Amol Deshpande, and Samir Khuller. Minimizing communication cost in
distributed multi-query processing. In ICDE, 2009.

17. Juzheng Li and Sol M. Shatz. Remote query processing in wireless sensor networks
using coordinated mobile objects. In DMS, pages 82–87. Knowledge Systems In-
stitute, 2010.

18. Samuel Madden, Robert Szewczyk, Michael J. Franklin, and David E. Culler. Sup-
porting aggregate queries over ad-hoc wireless sensor networks. In WMCSA, pages
49–58, 2002.

19. Microchip Technology Inc. MCP9800/1/2/3 Data Sheet.
20. Rene Muller and Gustavo Alonso. Efficient sharing of sensor networks. In MASS,

2006.
21. Johannes Niedermayer, Andreas Züfle, Tobias Emrich, Matthias Renz, Nikos

Mamoulis, Lei Chen, and Hans-Peter Kriegel. Probabilistic nearest neighbor
queries on uncertain moving object trajectories. PVLDB, 7(3):205–216, 2013.

22. Chris Olston, Jing Jiang, and Jennifer Widom. Adaptive filters for continuous
queries over distributed data streams. In SIGMOD, 2003.

23. Sunil Prabhakar, Yuni Xia, Dmitri V. Kalashnikov, Walid G. Aref, and Susanne E.
Hambrusch. Query indexing and velocity constrained indexing: Scalable techniques
for continuous queries on moving objects. In IEEE Trans. Comput., volume 51,
pages 1124–1140, 2002.

24. Md. Ashiqur Rahman and Sajid Hussain. Energy efficient query processing in
wireless sensor network. In AINA Workshops (2), pages 696–700, 2007.

25. James Rankin. Gps and differential gps: An error model for sensor simulation. In
PLANS, pages 260–266, 1994.

26. Illya Stepanov, Pedro José Marrón, and Kurt Rothermel. Mobility modeling of
outdoor scenarios for manets. In Annual Simulation Symposium, pages 312–322,
2005.

27. Goce Trajcevski, Roberto Tamassia, Isabel F. Cruz, Peter Scheuermann, David
Hartglass, and Christopher Zamierowski. Ranking continuous nearest neighbors
for uncertain trajectories. VLDB J., 20(5):767–791, 2011.

28. Goce Trajcevski, Roberto Tamassia, Hui Ding, Peter Scheuermann, and Isabel F.
Cruz. Continuous probabilistic nearest-neighbor queries for uncertain trajectories.
In EDBT, pages 874–885, 2009.

29. Minji Wu, Jianliang Xu, Xueyan Tang, and Wang-Chien Lee. Top-k monitoring in
wireless sensor networks. IEEE Trans. Knowl. Data Eng., 19(7):962–976, 2007.

30. Xiaopeng Xiong, Mohamed F. Mokbel, and Walid G. Aref. Sea-cnn: Scalable
processing of continuous k-nearest neighbor queries in spatio-temporal databases.
In ICDE, 2005.

31. Yinuo Zhang and Reynold Cheng. Probabilistic filters: A stream protocol for
continuous probabilistic queries. Information Systems, 38(1):132 – 154, 2013.

32. Yinuo Zhang, Reynold Cheng, and Jinchuan Chen. Evaluating continuous proba-
bilistic queries over imprecise sensor data. In DASFAA, 2010.

	FP-CPNNQ: A Filter-Based Protocol for Continuous Probabilistic Nearest Neighbor Query

